• Title/Summary/Keyword: Laser sheet

Search Result 433, Processing Time 0.021 seconds

Study on visualization of vortex flow on hydrofoils (수중익에서 발생하는 보텍스 유동 가시화 연구)

  • Hong, Ji-Woo;Ahn, Byoung-Kwon
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.48-55
    • /
    • 2021
  • In order to design a propeller with high efficiency and excellent cavitation performance, theoretical and experimental studies on the cavitation and noise characteristics according to the blade section shape are essential. In general, sheet cavitation, bubble cavitation, and cloud cavitation are the main causes of hull vibration and propeller surface erosion. However vortex cavitation, which has the greatest influence on the noise level because the fastest CIS in ship propeller, has been researched for a long time and studies have been conducted recently to control it. In this experiment, the development process of cavitation was measured by using three dimensional wings with two different wing section and wing tip shapes, and the noise level at that time was evaluated. In addition, we evaluated the relationship between cavitation inception and hydrodynamic force using three component load cell and we measured the velocity field of wing wake using LDV.

A Study on the Measurement of two Dimensional Strain by ESPI Method and Image processing (E.S.P.I법과 화상처리에 의한 2차원의 스트레인 측정에 관한 연구)

  • KIM, K.S.;KIM, H.S.;YANG, S.P.;KIM, C.W.;JUNG, Y.G.;HONG, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.114-122
    • /
    • 1994
  • ESPE(Electonic-Speckle-Pattern-Interferometry) is very useful method for measuring In-plane displacement. Using the CW-Laser and Image processing system, it is possible to measure displacement and strain. Unlike traditional straingauge or moire' method, ESPI method requires no special surface preparation or attachments and can be measured In-plane displacement with no contact and real time. In this experimental specimen was loaded in paralled with loadcell, which provided loading step. The specimen was sheet plate, which was attached straingauge in x-y direction. In this study provides an example of how ESPI has been used to measure two dimensional displacement and strain distribution in this specimen. The results measured by ESPI compare with the data which was measured straingauge method in tensile testing at 1 ton range.

  • PDF

Characteristics of Ag-added Ge2Sb2Te5 Thin Films and the Rapid Crystallization (Ag-첨가 Ge2Sb2Te5 박막의 물성 및 고속 결정화)

  • Kim, Sung-Won;Song, Ki-Ho;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.629-637
    • /
    • 2008
  • We report several experimental data capable of evaluating the amorphous-to-crystalline (a-c) phase transformation in $(Ag)_x(Ge_2Sb_2Te_5)_{1-x}$ (x = 0, 0.05, 0.1) thin films prepared by a thermal evaporation. The isothermal a-c structural phase changes were evaluated by XRD, and the optical transmittance was measured in the wavelength range of $800{\sim}3000$ nm using a UV-vis-IR spectrophotometer. A speed of the a-c transition was evaluated by detecting the reflection response signals using a nano-pulse scanner with 658 nm laser diode (power P = $1{\sim}17$ mW, pulse duration t = $10{\sim}460$ ns). The surface morphology and roughness of the films were imaged by AFM. It was found that the crystallization speed was so enhanced with an increase of Ag content. While the sheet resistance of c-phase $(Ag)_x(Ge_2Sb_2Te_5)_{1-x}$ was similar to that of c-phase $Ge_2Sb_2Te_5$ (i.e., $R_c{\sim}10{\Omega}/{\square}$), the sheet resistance of a-phase $(Ag)_x(Ge_2Sb_2Te_5)_{1-x}$ was found to be lager than that of a-phase $Ge_2Sb_2Te_5$, $R_a{\sim}5{\times}10^6{\Omega}{/\square}$. For example, the ratios of $R_a/R_c$ for $Ge_2Sb_2Te_5$ and $(Ag)_{0.1}(Ge_2Sb_2Te_5)_{0.9}$ were approximately $5{\times}10^5$ and $5{\times}10^6$, respectively.

A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images (Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구)

  • Yoon, Jun-Kyu;Myong, Kwang-Jae;Jiro Senda;Fujimoto Hajime;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

A Study on the Profile Change Measurement of Steam Generator Tubes with Tube Expansion Methods

  • Kim, Young-Kyu;Song, Myung-Ho;Choi, Myung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 2011
  • Steam generator tubes for nuclear power plants contain the local shape transitions on their inner or outer surface such as dent, bulge, over-expansion, eccentricity, deflection, and so on by the application of physical force during the tube manufacturing and steam generator assembling and by the sludge (that is, corrosion products) produced during the plant operation. The structural integrity of tubes will be degraded by generating the corrosive crack at that location. The profilometry using the traditional bobbin probes which are currently applied for measuring the profile change of tubes gives us basic information such as axial locations and average magnitudes of deformations. However, the three-dimensional quantitative evaluation on circumferential locations, distributional angle, and size of deformations will have to be conducted to understand the effects of residual stresses increased by local deformations on corrosive cracking of tubes. Steam generator tubes of Korean standard nuclear power plants expanded within their tube-sheets by the explosive expansion method and suffered from corrosive cracks in the early stage of power operation. Thus, local deformations of steam generator tubes at the top of tube-sheet were measured with an advanced rotating probe and a laser profiling system for the two cases where the tubes expanded by the explosive expansion method and hydraulic expansion. Also, the trends of eccentricity, deflection, and over-expansion of tubes were evaluated. The advanced eddy current profilometry was confirmed to provide accurate information of local deformations compared with laser profilometry.

An Experimental Analysis on the Spray Structure of Multi-component Fuels Using Magnification Photograph and Mie Scattering Images (확대촬영법 및 Mie 산란광법을 이용한 다성분연료의 분무구조에 관한 실험적 해명)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.707-716
    • /
    • 2008
  • The objective of this study was to analyze the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the variant ambient conditions. Spray structure and spatial distribution of liquid phase concentration were investigated using a thin laser sheet illumination technique on the three component mixed fuels. A pulsed Nd:YAG laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contains i-octane($C_8H_{18}$), n-dodecane($C_{12}H_{26}$) and n-hexadecane($C_{16}H_{34}$) that were selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 42 MPa, 72 MPa and 112 MPa in injection pressure, $5\;kg/m^3$, $15kg/m^3$ and $30kg/m^3$ in ambient gas density, 300 K, 500 K, 600 K and 700 K in ambient gas temperature, 300 K and 368 K in fuel temperature and different fuel mass fraction. Experimental results indicated that the multi-component fuels made two phase region mixed vapor and liquid so that it would are helpful to improve combustion, for the fuels of high boiling point component could accelerate evaporation very much according as low boiling point fuel was added to high boiling point fuel.

A Study of Spray Characteristics of the Rotating Fuel Nozzle with Orifice Diameters (회전연료노즐의 오리피스직경에 따른 분사특성연구)

  • Lee, Mae-Hoon;Jang, Seong-Ho;Lee, Dong-Hun;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.51-56
    • /
    • 2010
  • An experimental study was performed to understand spray characteristics of the V type rotating fuel nozzle with orifice diameters by using high speed rotational system. The experimental apparatus consist of a high speed rotational system, fuel injection system and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, droplet size is reduced with increasing orifice diameter up to the critical value. When increasing orifice diameter over than this critical value, droplet size is not decreased with increasing the orifice diameter. This is due to the irregular distribution of the liquid sheet around the inner surface of injection orifice.

A Study on Design and Application of Tissue Compensator for 6MV X-rays (6MV X-선에 대한 조직 보상체의 제작 및 응용에 관한 연구)

  • Chai Kyu Young;Choi Eun Kyung;Chung Woong Ki;kang Wee Saing;Ha Sung Whan;Park Charn Il
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.123-132
    • /
    • 1989
  • A radiation beam incident on an irregular or sloping surface produces the non-uniformity of absorded dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator is designed based on the patient's three dimensional contour. After required compensator thickness was determined according to tissue deficit at $25cm\pm25cm$ field size, 10cm depth for 6MV x-rays, tissue deficit was mapped by isoheight technique using laser beam system. Compensator was constructed along the designed model using 0.8mm lead sheet or 5mm acryl plate. Dosimetric verification were peformed by film dosimetry using humanoid phantom. Dosimetric measurements were normalized to central axis full phantom readings for both compensated and non-compensated field. Without compensation, the percent differences in absorbed dose ranged as high as $12.1\%$ along transverse axis, $10.8\%$ along vertical axis. With the tissue compensators in place, the difference was reduced to $0\~43\%$ Therefore, it can be concluded that the compensator system constructed by isoheihnt technique can produce good dose distribution with acceptible inhomogeneity, and such compensator system can be effectively applied to clinical radiotherapy.

  • PDF

Weldability of Magnesium Alloy Sheet by Nd:YAG Laser (II) -Mechanical Properties and Microstructure of Weldment- (Nd:YAG 레이저를 이용한 마그네슘 합금 판재의 용접성 (II) -용접부의 기계적 특성과 미세조직-)

  • Kim, Jong-Do;Lee, Jung-Han;Lee, Jae-Bum;Lee, Mun-Yong;Park, Hyun-Jun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.116-116
    • /
    • 2009
  • 마그네슘 합금은 구조용으로 사용 가능한 금속 재료 중 가장 가벼운 소재이며, 동시에 비강도 및 비강성과 같은 기계적 특성이 우수하여 알루미늄 합금의 뒤를 이을 차세대 경량 재료로써 주목을 받고 있다. 더욱이 석유자원의 대부분을 소비하고 있는 운송기기 분야에서는 경량화를 통한 연비향상과 배출가스 저감이 가장 큰 과제이며, 이 문제를 해결하기 위한 노력의 일환으로 최경량 소재인 마그네슘 합금의 사용량은 더욱 증가할 것으로 기대된다. 한편 기존의 마그네슘 합금 관련 연구는 새로운 합금의 개발에 치우쳐 있었으며, 상대적으로 이들 합금을 활용하기 위한 가공기술, 특히 용접에 대한 연구는 아직까지 많이 부족한 실정이다. 이는 철강재와 비교하여 마그네슘 합금의 고유물성이 용접의 관점에서는 상당히 열악하기 때문으로, 마그네슘은 융점 및 비점은 낮은 반면, 증기압과 열전도율은 높고 표면장력 및 점성은 낮은 특성을 가지고 있다. 그러므로 타 공법에 비해 상대적으로 입열이 적고 고속용접이 가능한 레이저의 적용이 최적으로 판단된다. 따라서 본 연구에서는 Nd:YAG 레이저를 사용하여 압연판재로 상용화되어 있는 AZ31B 마그네슘 합금의 맞대기 용접성을 조사하였으며, 용접부의 미세조직과 용접조건에 따른 용접부의 기계적 특성을 비교 및 검토하였다. 용접부의 기계적 특성은 인장 및 경도시험을 통해 평가하였다. 그 결과 레이저 출력 1.2kW를 적용한 경우에 안정적인 강도를 얻을 수 있었으며 레이저 출력 1.5kW, 용접속도 80mm/sec의 조건에서 모재 인장강도 대비 103% 그리고 연신율 대비 47.1%의 최적의 결과가 얻어졌다. 또한 용접부의 경도는 모재와 동등하거나 다소 높은 수준이었다. 이는 용접시 용접부내 잔류하는 알루미늄에 의한 고용 강화 효과와 금속간화합물의 석출 빈도 증가, 그리고 레이저 용접의 특징인 급열급랭 공정에 기인한 결정립 미세화의 영향 때문으로 사료된다. 한편 용접부 미세조직을 관찰한 결과, 열영향부의 존재는 두드러지지 않았으며 용융경계부에서는 주상정이, 그리고 용접부 가운데에서는 등축정이 관찰되었다.

  • PDF

Phase Change Characteristics of Aux(Ge2Sb2Te5)1-x (x=0, 0.0110, 0.0323, 0.0625) Thin Film for PRAM (PRAM을 위한 Aux(Ge2Sb2Te5)1-x (x=0, 0.0110, 0.0323, 0.0625) 박막의 상변환 특성)

  • Shin, Jae-Ho;Baek, Seung-Cheol;Kim, Byung-Cheul;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.404-409
    • /
    • 2011
  • An amorphous $Ge_2Sb_2Te_5$ thin film is one of the most commonly used materials for phase-change data storage. In this study, $Au_x(Ge_2Sb_2Te_5)_{1-x}$ thin film amorphous-to-crystalline phase-change rate were evaluated in using 658 nm laser beam. The focused laser beam with a diameter <10 ${\mu}m$ was illuminated in the power (P) and pulse duration (t) ranges of 1-17 mW and 10-460 ns, respectively, with subsequent detection of the responsive signals reflected from the film surface. We also evaluated the material characteristics, such as optical absorption and energy gap, crystalline phases, and sheet resistance of as-deposited and annealed films. The result of experiments showed that the thermal stability of the $Ge_2Sb_2Te_5$ film is largely improved by adding Au.