• Title/Summary/Keyword: Laser scattering

Search Result 408, Processing Time 0.03 seconds

Raman Spectroscopical Evaluations of Carbonization and Graphitization of Coal Tar Pitch

  • Kim, Y.M.;An, K.L.;Kim, C.;Choi, Y.O.;Park, S.H.;Yang, K.S.;Lee, W.E.
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • Raman spectroscopy has been used to investigate the structure of coal tar pitch heat-treated up to $3000^{\circ}C$ by using 514.5 run Ar ion laser line. Four critical temperature ranges were found on pyrolyzing coal tar pitch, which correspond to four distinct processes from disordered carbons to the well-ordered graphite structure. The range of heat treat temperature (HTT) below $1000^{\circ}C$ corresponds to gas evolution during the pyrolysis of coal tar pitch. Above the HTT are correlated to rearrangements of enlarged molecules, growth of the molecules along the direction of plane, finally stacking in the normal direction of the plane, in the respective HTT ranges of 1000-2000, above 2000 and $2500-3000^{\circ}C$.

  • PDF

Measurement of Time Delay in Optical Fiber Line Using Rayleigh Scattering (Rayleigh 산란을 이용한 광선로의 time delay 측정)

  • Kwon, Hyung-Woo;Yu, Il;Yu, Yun-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.365-369
    • /
    • 2012
  • It is very important to control synchronization by inter-network delay compensation in high speed synchronous optcial transmission network systems. In this study we designed a delay measurement system based on OTDR using Rayleigh backscatterer in order to compensate for time delay due to the length of optical fiber line. We observed waveform variations on both averaging time and peak power of laser pulse. Finally, we executed experimental demonstration on its accuracy and test repeatability by comparison to the methods practically used in the industry. Experimental results show maximum error of 0.06usec and standard deviation of 0.021usec, which means it's possibly applied to delay control system for mobile repeaters and stations.

Three Dimensional Topology of Vortical Structure of a Round Jet in Cross Flow (횡단류 제트 와류구조의 3차원 토폴로지)

  • Shin, Dae Sig;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.918-927
    • /
    • 1999
  • In the fully developed internal flow fields, there are complex transition flows caused by interaction of the cross flow and jet when jet is Injected Into the flow. These interactions are studied by means of the flow visualization methods. An instantaneous laser tomographic method is used to reveal the physical mechanism and the structure of vortices formation in the branch pipe flow. The velocity range of cross flow of the pipe is 0.7m/s and the corresponding Reynolds number $R_{cf}$, based on the duct height is $5.6{\times}10^3$, diameter/height ratios(d/H) 0.14 and velocity ratios 3.0. Oil mist with the size of $10{\mu}m$ diameter is used for the scattering particle. The instantaneous topological features of the vortex ring roll-up of the jet shear layer and characteristics of this flow are studied in detail by performing flow visualization in rectangular duct flow. It is found that the formation and roll-up of ring vortices is a periodic phenomenon. The detailed topology of the vortices in the near field of a cross -flow jet and the mechanism associated with them give enforced hints of vortex breakdown within the vortex system due to the interaction of the jet and the cross-flow.

Selecting Characteristic Raman Wavelengths to Distinguish Liquid Water, Water Vapor, and Ice Water

  • Park, Sun-Ho;Kim, Yong-Gi;Kim, Duk-Hyeon;Cheong, Hai-Du;Choi, Won-Seok;Lee, Ji-In
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.209-214
    • /
    • 2010
  • The Raman shift of water vapor is 3657 $cm^{-1}$, and this Raman signal can be easily separated from other Raman signals or elastic signals. However, it is difficult to make simultaneous Raman measurements on the three phases of water, namely, ice water, liquid water, and water vapor. This is because we must consider the overlap between their Raman spectra. Therefore, very few groups have attempted to make Raman simultaneous measurements even on two elements (water vapor and liquid water, or water vapor and ice water). We have made an effort to find three characteristic Raman wavelengths that correspond to the three phases of water after measuring full Raman spectra of water on particular days that are rainy, snowy or clear. Finally, we have found that the 401-nm, 404-nm, and 408-nm wavelengths are the most characteristic Raman wavelengths that are representative of the water phases when we are using the 355-nm laser wavelength for making measurements.

Cellular Uptake Behavior of Poly(D,L-lactide-co-glycolide) Nanoparticles Derivatized with HIV-1 Tat49-57 Peptide (Abbreviated Title: Tat-PLGA Nanoparticles)

  • Park, Ju-Young;Nam, Yoon-Sung;Kim, Jun-Oh;Han, Sang-Hoon;Chang, Ih-Seop
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.2
    • /
    • pp.101-106
    • /
    • 2004
  • This work aims at examining the cellular uptake behavior of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles derivatized with a protein transduction domain (PTD) using HeLa cells. For this purpose, $Tat_{49-57}$ peptide derived from transcriptional activation (Tat) protein of HIV type-1 was covalently conjugated to the terminal end of PLGA. Nanoparticles were ten prepared with the $Tat_{49-57}-PLGA$ conjugates by a spontaneous phase inversion method. The prepared particles had a mean diameter of ca. 84 nm, as measured by dynamic light scattering. The interaction of the Tat-PLGA nanoparticles with cells was examined by using confocal laser scanning microscopy. It was found tat Tat-PLGA nanoparticles incubated with HeLa cells could efficiently translocate into cytoplasm, while plain PLGA nanoparticles showed negligible cellular uptake. In addition, even at $4^{\circ}C$ or in the presence of sodium azide significant cellular internalization of Tat-PLGA nanoparticles was still observed. These results indicate that a non-endocytotic translocation mechanism might be involved in the cellular uptake of Tat-PLGA nanoparticles.

Affected Enhance of Dye-Sensitized Solar Cells Using Silver Nanoparticle (은 나노 입자를 이용한 염료감응형 태양전지의 효율 향상 효과)

  • Jung, Haeng Yun;Hong, Kyung Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.34-39
    • /
    • 2018
  • In this study, e-beam equipment was used to form silver nanoparticles on thin films of $TiO_2$ to increase the efficiency of dye-sensitized solar cells and improve the annealing process. $TiO_2$ thin films with nanoparticle photoelectrodes were fabricated in individual units for use in dye-sensitized solar cells. The characteristics of dye-sensitized solar cells were compared to those of the prepared $TiO_2$ photoelectrode with and without nanoparticles. The dye-sensitized solar cells with silver nanoparticles showed a significant increase in the electric current density compared with the pure $TiO_2$ dye-sensitized solar cell and improved the solar conversion efficiency to 27.89%. The increased density of electric current increased the extent of light absorption of the dye owing to the plasmon resonance of the nanoparticles at the local surfaces. This phenomenon led to increased light scattering, which in turn increased the current density of the dye-sensitized solar cells and improved the solar conversion efficiency.

Structural and Electrical Properties of RaRuO$_3$ Thin Film for Electrode of Ferroelectric Capacitors (강유전체 캐패시터 전극으로의 BaRuO$_3$박막의 구조적 및 전기적 특성)

  • 박봉태;구상모;문병무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.56-61
    • /
    • 1999
  • Highly conductive oxide films of BaRuO$_3$ have been grown heteroepitaxially on (100) LaAlO$_3$ single crystalline substrates by using pulsed laser deposition. The films are c-axis oriented with an in-plane epitaxial relationship of <010><100>BaRuO$_3$ // <110>LaAlO$_3$. Atomic force microscopy (AFM) observation shows that they consist of a fine-arranged network of grains and have a mosaic microstructure. Generally temperature-dependent resistivity shows the transition from metallic curve to semiconductor-metallic twofold curve by the deposition conditions for Ru oxide based materials like SrRuO$_3$, CaRuO$_3$, BaRuO$_3$, etc.. This twofold curve comes from the structural similarity of Ru oxide based materials including BaRuO$_3$. We find that the distance of Ru-Ru bonding in the unit cell of BaRuO$_3$ as well as the grain boundary scattering could be the two important causes of these interesting conductive properties.

  • PDF

Synthesis and Thermal Property of Poly(styrene-g-caprolactone) with Well-defined Structure (분자구조가 제어된 Poly(styrene-g-caprolactone)의 합성 및 그라프트 공중합체의 열적 성질)

  • 오병석;안성국;조창기
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.306-313
    • /
    • 2000
  • Polycaprolactone (PCL) macromer containing terminal methacrylate group was synthesized by ring-opening polymerization. The number average molecular weight of PCL macromer was 11600 g/mole and polydispersity index was 1.09. The synthesized PCL macromer was copolymerized with styrene by stable free radical polymerization using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), benzoyl peroxide, and well-defined poly(styrene-g-caprolactone)s were synthesized. The synthesized copolymers was characterized by $^1$H-NMR and gel permeation chromatography equipped with multiangle laser light scattering detector. Thermal properties of graft copolymers were investigated by DSC.

  • PDF

Synthesis of Lu3Al5O12:Ce3+ Nano Phosphor by Coprecipitation Method, and Their Optical Properties (공침법을 이용한 Lu3Al5O12:Ce3+ 나노 형광체 합성과 광학적 특성 분석)

  • Kang, Taewook;Kang, Hyeonwoo;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.51-56
    • /
    • 2019
  • LuAG:Ce(Lu3Al5O12:Ce3+) nano phosphor were synthesized by applying the coprecipitation method. It is used to increase the color rendering of phosphor ceramic plate for high power LEDs and laser lighting. Internal quantum efficiency and absorption of LuAG:Ce nano phosphor are 51.5 % and 64.4 %, respectively, which is higher than the previously studied nano phosphors. The maximum absorption wavelength of this phosphor is 450 nm blue light, and the emission wavelength is 510 nm. The emission wavelength shifted to longer wavelength when the concentration of Ce increased in the heat treatment of the reducing atmosphere. Thermal quenching of LuAG nano phosphor was 70 % at 200 ℃, it was explained by their significant quenching of all raman scattering modes, implying the restriction of electron-phonon couplings caused by their defects.

Generation of sub-micron (nano) bubbles and characterization of their fundamental properties

  • Kim, Sangbeom;Kim, Hyoungjun;Han, Mooyoung;Kim, Tschungil
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2019
  • Although nanobubbles attract significant attention, their characteristics and applications have not been thoroughly defined. There are diverse opinions about the definition of nanobubbles and controversy regarding methods that verify their characteristics. This study defines nanobubbles as having a size less than $1{\mu}m$. The generation of these sub-micron (nano) bubbles may be verified by induced coalescence or light scattering. The size of a sub-micron (nano) bubbles may be measured by optical, and confocal laser scanning microscopy. Also, the size may be estimated by the relationship of bubble size with the dissolved oxygen concentration. However, further research is required to accurately define the average bubble size. The zeta potential of sub-micron (nano) bubbles decreases as pH increases, and this trend is consistent for micron bubbles. When the bubble size is reduced to about 700-900 nm, they become stationary in water and lose buoyancy. This characteristic means that measuring the concentration of sub-micron (nano) bubbles by volume may be possible by irradiating them with ultrasonic waves, causing them to merge into micron bubbles. As mass transfer is a function of surface area and rising velocity, this strongly indicates that the application of sub-micron (nano) bubbles may significantly increase mass transfer rates in advanced oxidation and aeration processes.