Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.1.34

Affected Enhance of Dye-Sensitized Solar Cells Using Silver Nanoparticle  

Jung, Haeng Yun (Laser Research Center, Korea Photonics Technology Institute)
Hong, Kyung Jin (Department of Electrical & Electronic Engineering, Gwangju University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.1, 2018 , pp. 34-39 More about this Journal
Abstract
In this study, e-beam equipment was used to form silver nanoparticles on thin films of $TiO_2$ to increase the efficiency of dye-sensitized solar cells and improve the annealing process. $TiO_2$ thin films with nanoparticle photoelectrodes were fabricated in individual units for use in dye-sensitized solar cells. The characteristics of dye-sensitized solar cells were compared to those of the prepared $TiO_2$ photoelectrode with and without nanoparticles. The dye-sensitized solar cells with silver nanoparticles showed a significant increase in the electric current density compared with the pure $TiO_2$ dye-sensitized solar cell and improved the solar conversion efficiency to 27.89%. The increased density of electric current increased the extent of light absorption of the dye owing to the plasmon resonance of the nanoparticles at the local surfaces. This phenomenon led to increased light scattering, which in turn increased the current density of the dye-sensitized solar cells and improved the solar conversion efficiency.
Keywords
Dye-sensitized solar cells; Surface plasmon resonance; Ag nanoparticles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kneipp, Phys. Today, 60, 40 (2007). [DOI: https://doi.org/10.1063/1.2812122]
2 M. Danckwerts and L. Novotny, Phys. Rev. Lett., 98, 026104 (2007). [DOI: https://doi.org/10.1103/PhysRevLett.98. 026104]   DOI
3 K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, Nano Lett., 7, 254 (2007). [DOI: https://doi.org/10.1021/nl062090x]   DOI
4 J. R. Lakowicz, Anal. Biochem., 337, 171 (2005). [DOI: https://doi.org/10.1016/j.ab.2004.11.026]   DOI
5 T. Yatsui, Y. Nakajima, W. Nomura, and M. Ohtsu, Appl. Phys. B: Lasers Opt., 84, 265 (2006). [DOI: https://doi.org/10.1007/s00340-006-2328-5]   DOI
6 T. C. Li, A. M. Spokoyny, C. She, O. K. Farha, C. A. Mirkin, T. J. Marks, and J. T. Hupp, J. Am. Chem. Soc., 132, 4580 (2010). [DOI: https://doi.org/10.1021/ja100396n]   DOI
7 C. Y. Lee and J. T. Hupp, Langmuir, 26, 3760 (2010). [DOI: https://doi.org/10.1021/la9031927]   DOI
8 M. M. Jiang, H. Y. Chen, B. H. Li, K. W. Liu, C. X. Shan, and D. Z. Shen, J. Mater. Chem. C, 2, 56 (2014). [DOI: https://doi.org/10.1039/C3TC31910E]   DOI
9 S. D. Standridge, G. C. Schatz, and J. T. Hupp, Langmuir, 25, 2596 (2009). [DOI: https://doi.org/10.1021/la900113e]   DOI
10 N. Koide, A. Islam, Y. Chiba, and L. Han, J. Photochem. Photobiol., A, 182, 296 (2006). [DOI: https://doi.org/10.1016/j.jphotochem.2006.04.030]   DOI
11 S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys., 101, 093105 (2007). [DOI: https://doi.org/10.1063/1.2734885]   DOI