DOI QR코드

DOI QR Code

Selecting Characteristic Raman Wavelengths to Distinguish Liquid Water, Water Vapor, and Ice Water

  • Park, Sun-Ho (Department of Physics, Kongju National University) ;
  • Kim, Yong-Gi (Department of Physics, Kongju National University) ;
  • Kim, Duk-Hyeon (Division of Cultural Studies, Hanbat National University) ;
  • Cheong, Hai-Du (Division of Cultural Studies, Hanbat National University) ;
  • Choi, Won-Seok (Division of Cultural Studies, Hanbat National University) ;
  • Lee, Ji-In (Division of Cultural Studies, Hanbat National University)
  • Received : 2010.06.28
  • Accepted : 2010.08.16
  • Published : 2010.09.25

Abstract

The Raman shift of water vapor is 3657 $cm^{-1}$, and this Raman signal can be easily separated from other Raman signals or elastic signals. However, it is difficult to make simultaneous Raman measurements on the three phases of water, namely, ice water, liquid water, and water vapor. This is because we must consider the overlap between their Raman spectra. Therefore, very few groups have attempted to make Raman simultaneous measurements even on two elements (water vapor and liquid water, or water vapor and ice water). We have made an effort to find three characteristic Raman wavelengths that correspond to the three phases of water after measuring full Raman spectra of water on particular days that are rainy, snowy or clear. Finally, we have found that the 401-nm, 404-nm, and 408-nm wavelengths are the most characteristic Raman wavelengths that are representative of the water phases when we are using the 355-nm laser wavelength for making measurements.

Keywords

References

  1. V. Ramaswamy and S. M. Freidenriech, “Solar radiative line-by-line determination of water vapor absorption and water cloud extinction in inhomogeneous atmospheres,” J. Geophys. Res. 96, 9133-9157 (1991). https://doi.org/10.1029/90JD00083
  2. J. A. Weinman, “Monte Carlo analysis of multiple scattering on light pulses reflected by turbid atmospheres,” J. Atmos. Sci. 33, 1763-1771 (1976). https://doi.org/10.1175/1520-0469(1976)033<1763:EOMSOL>2.0.CO;2
  3. S. T. Shipley and D. H. Tracy, “High spectral resolution LIDAR to measure optical scattering properties of atmospheric aerosols 1: theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983). https://doi.org/10.1364/AO.22.003716
  4. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution LIDAR to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysis,” Appl. Opt. 22, 3725-3732 (1983). https://doi.org/10.1364/AO.22.003725
  5. J. R. Scherer, M. K. Go, and S. Kint, “The vibrational spectroscopy of water,” J. Phys. Chem. 78, 1304-1313 (1974). https://doi.org/10.1021/j100606a013
  6. G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114-126 (1967). https://doi.org/10.1063/1.1711834
  7. G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770-1778 (1991). https://doi.org/10.1364/JOSAB.8.001770
  8. S. H. Melfi, “Observation of atmospheric fronts using Raman LIDAR moisture measurements,” J. Appl. Meteor. 28, 789-806 (1989). https://doi.org/10.1175/1520-0450(1989)028<0789:OOAFUR>2.0.CO;2
  9. S. H. Melfi, J. D. Lawrence Jr., and M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295-297 (1963). https://doi.org/10.1063/1.1653005
  10. J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteor. 11, 108-112 (1972). https://doi.org/10.1175/1520-0450(1972)011<0108:MOATPB>2.0.CO;2
  11. S. H. Melfi, K. D. Evans, J. Li, D. Whiteman, R. Ferrare, and G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551-3559 (1997). https://doi.org/10.1364/AO.36.003551
  12. I. A. Veselovskii, H. K. Cha, D. H. Kim, S. C. Choi, and J. M. Lee, “Study of atmospheric water in gaseous and liquid state by using combined elastic-Raman depolarization LIDAR,” Appl. Phys. B 73, 739-744 (2001). https://doi.org/10.1007/s003400100732
  13. V. Rizi, M. Iarlori, G. Rocci, and G. Visconti, “Raman LIDAR observations of cloud liquid water,” Appl. Opt. 43, 6440-6453 (2004). https://doi.org/10.1364/AO.43.006440
  14. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitlamp, E. Voss, and W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18-28 (1992). https://doi.org/10.1007/BF00348608
  15. M. F. Vernon, D. J. Krajnovich, H. S. Kwok, J. M. Lisy, Y. R. Shen, and Y. T. Lee, “Infrared vibrational predissociation spectroscopy of water clusters by the crossed laser molecular beam technique,” J. Chem. Phys. 77, 47-57 (1982). https://doi.org/10.1063/1.443631
  16. G. D. A’arrigo, G. Maisano, F. Mallamace, P. Migliadrdo, and F. Wanderingh, “Raman scattering and structure of normal and supercooled water,” J. Chem. Phys. 75, 4264-4270 (1981). https://doi.org/10.1063/1.442629
  17. N. P. Andreeva, A. F. Bunkin, and S. M. Persin, “Deformation of the Raman scattering spectrum of ice under local laser heating near 0 degree,” Optics and Spectroscopy 93, 252-256 (2002). https://doi.org/10.1134/1.1503755
  18. D. Kim, I. Song, H. D. Cheong, Y. Kim, S. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman LIDAR signals and principal component analysis,” Opt. Rev. 17, 84-89 (2010). https://doi.org/10.1007/s10043-010-0015-6
  19. D. H. Whiteman, G. E. Walrafen, W. H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38, 2614-2615 (1999). https://doi.org/10.1364/AO.38.002614

Cited by

  1. Raman and fluorescent scattering matrix of spherical microparticles vol.50, pp.21, 2011, https://doi.org/10.1364/AO.50.004054
  2. An Assessment of macro-scale in situ Raman and ultraviolet-induced fluorescence spectroscopy for rapid characterization of frozen peat and ground ice vol.15, pp.02, 2016, https://doi.org/10.1017/S1473550415000221
  3. Aerosol and cloud characteristics analysis methods using multiple kinds of Raman lidar signals vol.124, pp.12, 2013, https://doi.org/10.1016/j.ijleo.2012.03.012
  4. Cloud and Aerosol Spectroscopy with Raman Lidar vol.31, pp.9, 2014, https://doi.org/10.1175/JTECH-D-13-00188.1
  5. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman lidar vol.51, pp.22, 2012, https://doi.org/10.1364/AO.51.005477
  6. Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere vol.52, pp.28, 2013, https://doi.org/10.1364/AO.52.006884
  7. Accurate absolute measurements of the Raman backscattering differential cross-section of water and ice and its dependence on the temperature and excitation wavelength vol.194, 2017, https://doi.org/10.1016/j.jqsrt.2017.03.023