• Title/Summary/Keyword: Laser parameters

Search Result 980, Processing Time 0.024 seconds

Model setup and optimization of the terminal rise velocity of microbubbles using polynomial regression analysis (다항식 회귀분석을 이용한 마이크로 버블의 종말상승속도 모델식 구축 및 운전조건 최적화)

  • Park, Gun-Il;Kim, Heung-Rae;Cho, Il Hyoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1393-1406
    • /
    • 2018
  • In this study, three parameters (Pressure ($X_1$), Airflow rate ($X_2$), Operation time ($X_3$)) were experimentally designed and the predicted model and optimal conditions were established by using the terminal rise velocity of the microbubbles as the response value. The polynomial regression analysis showed that the optimum value for the terminal rise velocity at the Pressure ($X_1$) of 4.5 bar, Airflow rate ($X_2$) of 3.3 L/min and Operation time ($X_3$) of 2.2 min was 5.14 cm/min ($85.7{\mu}m/sec$). Also, the highest microbubble diameter size distribution in the range of 2 to $5{\mu}m$ and 25 to $50{\mu}m$ was confirmed by using a laser particle counting apparatus.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

Admittance Model-Based Nanodynamic Control of Diamond Turning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어)

  • Jeong, Sanghwa;Kim, Sangsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Three-dimensional morphometric study on the retromolar pad

  • Min-Sang Cha;Dae-Gon Kim;Yoon-Hyuk Huh;Lee-Ra Cho;Chan-Jin Park
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.6
    • /
    • pp.302-314
    • /
    • 2023
  • PURPOSE. The aim of this study was to classify the shapes of retromolar pads and assess their morphometric differences using a 3D model. MATERIALS AND METHODS. Two hundred fully edentulous or Kennedy Class I partially edentulous patients (400 retromolar pads) were enrolled. Scan data of the definitive mandibular casts produced through functional impressions were obtained using a 3D laser scanner. Seven parameters (transverse diameter, longitudinal diameter, transverse-contour length, longitudinal-contour length, longitudinal/transverse diameter ratio, longitudinal/transverse-contour length ratio, and angle of the retromolar pad line to the residual alveolar ridge line) were measured using image analysis software. Subsequently, the pads were classified according to the shape. Statistical analyses were performed using 95% confidence intervals. RESULTS. Classifying the retromolar pads into three shapes led to high intra-examiner reliability (Cronbach's alpha = 0.933). The pear shape was the most common (56.5%), followed by oval/round (27.7%) and triangular (15.8%) shapes. There were no significant differences between the left and right sides according to the shape and no significant differences in any parameter according to age. The transverse diameter and longitudinal/transverse diameter ratio differed between sexes (P < .05). The triangular shape had a significantly different transverse diameter, transverse-contour length, longitudinal/transverse diameter ratio, and longitudinal/transverse-contour length ratio compared with the pear and oval/round shapes (P < .05). CONCLUSION. From a clinical reliability standpoint, classifying retromolar pads into three shapes (oval/round, pear-shaped, and triangular) is effective. The differences in the sizes among the shapes were attributed to the transverse measurement values.

Does photobiomodulation on the root surface decrease the occurrence of root resorption in reimplanted teeth? A systematic review of animal studies

  • Theodoro Weissheimer;Karolina Frick Bischoff;Carolina Horn Troian Michel;Bruna Barcelos So;Manoela Domingues Martins;Matheus Albino Souza;Ricardo Abreu da Rosa;Marcus Vinicius Reis So
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.24.1-24.16
    • /
    • 2023
  • This review aimed to answer the following question "Does photobiomodulation treatment of the root surface decrease the occurrence of root resorption in reimplanted teeth?" Electronic searches were performed in the MEDLINE/PubMed, Cochrane Library, Scopus, Web of Science, Embase, and Grey Literature Report databases. Risk of bias was evaluated using SYRCLE Risk of Bias tool. The Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) tool was used to assess the certainty of evidence. In total, 6 studies were included. Five studies reported a reduced occurrence of root resorption in teeth that received photobiomodulation treatment of the root surface prior to replantation. Only 1 study reported contradictory results. The photobiomodulation parameters varied widely among studies. GRADE assessment showed a low certainty of evidence. It can be inferred that photobiomodulation treatment of the root surface prior to replantation of teeth can reduce the occurrence of root resorption. Nonetheless, further clinical studies are needed.

Ground State Energy of Gd3+ Paramagnetic Ion in PbWO4 : Gd Single Crystal (PbWO4 : Gd 단결정 내의 Gd3+ 상자성 이온에 대한 바닥 상태 에너지)

  • Yeom, Tae Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.45-49
    • /
    • 2016
  • Ground state energy levels of $Gd^{3+}$ ion (effective spin S = 7/2) in $PbWO_4$ single crystal doped with $Gd^{3+}$ paramagnetic impurity at tetragonal symmetry are calculated with spectroscopic splitting parameters and zero field splitting parameters using by effective spin Hamiltonian. It turns out that the zero field splitting energies of $Gd^{3+}$ ion were the same regardless of the directions of $PbWO_4$ : Gd single crystal. The calculated energy differences for ${\mid{\pm}7/2}$ > ${\leftrightarrow}{\mid{\pm}5/2}$ >, ${\mid{\pm}5/2}$ > ${\leftrightarrow}{\mid{\pm}3/2}$ >, and ${\mid{\pm}3/2}$ > ${\leftrightarrow}{\mid{\pm}1/2}$ > transitions were 6.9574 GHz, 6.9219 GHz, and 15.8704 GHz, respectively when the applied magnetic field is zero. The calculated energy level diagrams were different for different directions of applied magnetic field. For B // a- and c-axis, the energy level diagrams are calculated and discussed.

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Transport parameters in a-Se:As films for digital X-ray conversion material using the moving-photocarrier-grating technique (moving-photocarrier-grating 기술을 이용한 디지털 X-선 변환물질 a-Se:As의 수송변수)

  • Park, Chang-Hee;Nam, Sang-Hee;Kim, Jae-Hyung
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.267-272
    • /
    • 2005
  • The effects of As addition in amorphous selenium (a-Se) films for digital X-ray conversion material have been studied using the moving photocarrier grating (MPG) technique. This method utilizes the moving interference pattern generated by the superposition of the two frequency shifted laser beams for the illumination of the sample. This moving intensity grating induces a short circuit current, jsc in a-Se:As film. The transport parameters of the sample are extracted from the grating-velocity dependent short circuit current induced in the sample along the modulation direction. The electron and hole mobility, and recombination lifetime of a-Se films with arsenic (As) additions have been obtained. We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film, whereas electron mobility decreases with As addition due to the defect density. The transport properties for As doped a-Se films obtained by using MPG technique have been compared with X-ray sensitivity for a-Se:As device. The fabricated a-Se(0.3% As) device film exhibited the highest X-ray sensitivity out of 5 samples.

  • PDF

Crystal Growth of $Cr:Al_2O_3$ and $Ti:Al_2O_3$ by Czochralski Technique (용액인상법에 의한 $Cr:Al_2O_3$$Ti:Al_2O_3$ 단결정 육성)

  • Yu, Yeong-Mun;Lee, Yeong-Guk;Park, Ro-Hak
    • Korean Journal of Crystallography
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 1995
  • Cr:A12O3 and Ti:A12O3 single crystals were grown by Czochralski method, and the effects of crystal growth parameters such as pulling rate, rotation rate, dopant and growth atmosphere on crystal quality were investigated. And spectroscopic properties including lasing efficiency were also measured. Single crystals, sized of 20mm in diameter and 100-135mm in length, were successfully grown from the seed of <001> direction. With the doping level of 0.5w/o Cr2O3, pulling rate 2.0mm/hr, rotation rate of 30rpm and inert atmosphere by nitrogen gas, high quality crystals of Cr:A12O3 were grown. While in case of Ti:A12O3 crystals, high quality crystals were grown under the conditions of the doping level of 0.25w/o TiO2, pulling rate of 1.5mm/hr, rotation rate of 30rpm and reducing atmosphere by hydrogen - nitrogen mixed gas. It was confirmed that Cr3+ ion which maintains its ionoc valence during growth easily de-bubbled than Ti4+ ion which changes its valence, Fe3+ ion also has do-bubbling effect to Ti:A12O3 crystal and the reducing atmosphere by 90% N2 - 10% H2 mixed gas gave effective result on the changing of Ti4+ to Ti3+ and de-bubbling. As a result of spectroscopic measurements of Cr:A12O3 crystal, 4A2 →4F2 and 4F1 absorption transitions and E →4A2(R1) and 2A →4A2(R2) fluorenscence transitions were confirmed. And it was measured that wavelengths of laser R1 and R2 transitions were 696±5nm and 692±5nm respectively, line width of these transitions were 12A, and life-time of fluorenscence was 152μsec. In case of Ti:A12O3 crystals, it was confirmed that absortion transition of 4T2→4E and fluorescence transition of 4E→4T2 with wide range of 650-1050nm was occured. And 147μsec of life-time of fluorescence, 125.4 of figure of merit and 9% of laser efficience were also measured.

  • PDF

Association between Axial Length and Anthropometric Value in Korean Children (한국 어린이의 안축장과 신체 계측치와의 관련성)

  • Kim, Hyojin;Lyu, Jungmook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.397-402
    • /
    • 2014
  • Purpose: To investigate the relationship between axial length (AL) and anthropometric parameters in Korean children. Methods: This study included 40 urban school children aged 11-12 years (mean age, $11.95{\pm}0.22$ years; 45.0% girls) residing in Seoul, South Korea. AL (using partial coherence laser interferometry), corneal radius, refractive error, height (m), and weight (kg) were measured. Body mass index (BMI $[kg/m^2]=weight/[height]^2$) and degree of obesity (DO[%]=[actual weight standard weight]/standard weight) were calculated. Furthermore, the number of hours spent reading, watching television, and using a computer every day was determined using a detailed questionnaire. Results: The students had a mean spherical equivalent refraction of $1.06{\pm}0.84$ D. Weight (r=0.427, p=0.006), BMI (r=0.508, p=0.001), and DO (r=0.371, p=0.018) showed a significant positive correlation with AL. Furthermore, longer AL was significantly associated with heavier weight (p=0.041), and higher BMI (p=0.015), and higher DO quartiles (p=0.042). After adjust for age, sex, and near-work activities, multivariate linear regression models showed that weight, BMI, and DO were still significantly associated with AL. Among the near-work activities, daily reading time was significantly associated with AL. Conclusions: AL was positively related to weight as well as daily reading time in Korean urban school children.