• 제목/요약/키워드: Laser direct etching

검색결과 32건 처리시간 0.018초

레이저를 이용한 미세에칭에 관한 연구 (A Study on the Argon Laser Assisted Thermochemical Micro Etching)

  • 박준민;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.844-847
    • /
    • 2001
  • The application of laser direct etching has been discussed, and believed that the process is a very powerful method for micro machining. This study is focused on the micro patterning technology using laser direct etching process with no chemical damage of the material surface. A new introduced concept of energy synergy effect for surface micro machining is the combination of chemically ion reaction and laser thermal process. The etchant can't etch the material in room temperature, and used Ar laser has not power enough to machine. But, the machining is occurred in local area of the material by the combined energy. Using this process, the material is especially prevented from chemical damage for electric property. We have tested this new concept, and achieved a line with $1{mu}m$ width. The Ar laser with 488nm wavelength was used. The material was Si(100) wafer, and etchant is KOH solution. The application and flexibility of this process is in great hopes for MEMS structures and fabrication of the micro electric device parts.

  • PDF

스퍼터링된 산화 아연 박막의 레이저 직접 식각 시 기판에 의한 영향 (Effects of Various Substrates on the Laser Direct Etching of the Sputtered ZnO Films)

  • 오기택;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.894-898
    • /
    • 2013
  • Zinc oxide(ZnO) was sputtered on various glass and flexible substrates such as polyethylene terephthalate(PET) and polycarbonate(PC). A Q-switched $Nd:YVO_4$ laser with a wavelength of 1,064 nm was used for the direct etching of ZnO films. It was possible to obtain laser etched line patterns on the ZnO films on PC substrate at some specific laser beam conditions. In the flexible substrates, more thermal energy of laser beam is expected to be spreaded for the etching process.

2차원 층상 구조 전이금속 칼코겐화합물의 레이저 식각에 의한 직접-간접 띠간격 구조 연구 (A Study on Indirect-Direct Bandgap Structures of 2D-layered Transition Metal Dichalcogenides by Laser Etching)

  • 문은아;고필주
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.576-580
    • /
    • 2016
  • Single-layered transition metal dichalcogenides (TMDs) exhibit more interesting physical properties than those of bulk TMDs owing to the indirect to direct bandgap transition occurring due to quantum confinement. In this research, we demonstrate that layer-by-layer laser etching of molybdenum diselenide ($MoSe_2$) flakes could be controlled by varying the parameters employed in laser irradiation (time, intensity, interval, etc.). We observed a dramatic increase in the photoluminescence (PL) intensity (1.54 eV peak) after etching the samples, indicating that the removal of several layers of $MoSe_2$ led to a change from indirect to direct bandgap. The laser-etched $MoSe_2$ exhibited the single $MoSe_2$ Raman vibration modes at ${\sim}239.4cm^{-1}$ and ${\sim}295cm^{-1}$, associated to out-of-plane $A_{1g}$ and in-plane ${E^1}_{2g}$ Raman modes, respectively. These results indicate that controlling the number of $MoSe_2$ layers by laser etching method could be employed for optimizing the performance of nano-electronic devices.

$Al_{0.3}Ga_{0.7}As/GaAs$ 다층구조의 레이저 직접 건식에칭 (Laser Direct Ory Etching for $Al_{0.3}Ga_{0.7}As/GaAs$ Multi-layer Structures)

  • 박세기;이천;김성일;김은규;민석기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1980-1981
    • /
    • 1996
  • Laser direct dry etching is a new technique in semiconductor processing which has a lot of advantage, including decrease of etching-induced damage, maskless, photoresistiess, and high selectivity. This study presents characteristics of a laser direct dry etching for $Al_{0.3}Ga_{0.7}As/GaAs$ multi-layer structures for the first time. In this study, we were able to obtain the unusual aching profiles. The cross sectional analysis of etched groove was peformed for reaction characteristics and their applications.

  • PDF

PC 기판상에 스퍼터링된 투명전도 산화막의 레이저 식각 특성 (Laser Direct Etching on Transparent Conductive Oxide Films Sputtered on Polycarbonate Substrates)

  • 이정민;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제27권3호
    • /
    • pp.146-150
    • /
    • 2014
  • As a method of simple patterning of transparent conductive oxide (TCO) films deposited on flexible substrates, laser direct etching was carried out on TCO films sputtered on polycarbonate (PC) substrates. As a result of different binding energies in TCO films, indium tin oxide (ITO) and indium gallium zinc oxide (IGZO) were more easily etched than zinc oxide with different $Nd:YVO_4$ laser beam conditions.

이층 박막 구조에서 ITO 전극의 레이저 직접 패터닝 시레이저 식각 패턴 중첩 비율의 변화 (Overlapping Rates of Laser Spots on the Laser Direct Patterning of ITO Electrode in the Double-layer Structure of Thin Film)

  • 왕건훈;박정철;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.377-380
    • /
    • 2012
  • Laser direct patterning of indium tin oxide(ITO) is one of new methods of direct etching process to replace the conventional photolithography. A diode pumped Q-switched Nd:$YVO_4$ (${\lambda}$= 1,064 nm) laser was used to produce ITO electrode on various transparent oxide semiconductor films such as zinc oxide(ZnO). The laser direct etched ITO patterns on ZnO were compared with those on glass substrate and were considered in terms of the overlapping rate of laser beam. In case of the laser etching on double-layer, it was possible to obtain the higher overlapping rate of laser beam.

MEMS 응용을 위한 $Ar^+$ 이온 레이저에 의한 단결정/다결정 실리콘 식각 특성 (Characteristics of single/poly crystalline silicon etching by$Ar^+$ ion laser for MEMS applications)

  • 이현기;한승오;박정호;이천
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권5호
    • /
    • pp.396-401
    • /
    • 1999
  • In this study, $Ar^+$ ion laser etching process of single/poly-crystalline Si with $CCl_2F_2$ gas is investigated for MEMS applications. In general, laser direct etching process is useful in microelectronic process, fabrication of micro sensors and actuators, rapid prototyping, and complementary processing because of the advantages of 3D micromachining, local etching/deposition process, and maskless process with high resolution. In this study, a pyrolytic method, in which $CCl_2F_2$ gasetches molten Si by the focused laser, was used. In order to analyze the temperature profile of Si by the focused laser, the 3D heat conduction equation was analytically solved. In order to investigate the process parameters dependence of etching characteristics, laser power, $CCl_2F_2$ gas pressure, and scanning speed were varied and the experimental results were observed by SEM. The aspect ratio was measured in multiple scanning and the simple 3D structure was fabricated. In addition, the etching characteristics of $6\mum$ thick poly-crystalline Si on the insulator was investigated to obtain flat bottom and vertical side wall for MEMS applications.

  • PDF

Fabricating a Micro-Lens Array Using a Laser-Induced 3D Nanopattern Followed by Wet Etching and CO2 Laser Polishing

  • Seung-Sik Ham;Chang-Hwam Kim;Soo-Ho Choi;Jong-Hoon Lee;Ho Lee
    • 한국산업융합학회 논문집
    • /
    • 제26권4_1호
    • /
    • pp.517-527
    • /
    • 2023
  • Many techniques have been proposed and investigated for microlens array manufacturing in three-dimensional (3D) structures. We present fabricating a microlens array using selective laser etching and a CO2 laser. The femtosecond laser was employed to produce multiple micro-cracks that comprise the predesigned 3D structure. Subsequently, the wet etching process with a KOH solution was used to produce the primary microlens array structures. To polish the nonoptical surface to the optical surface, we performed reflow postprocessing using a CO2 laser. We confirmed that the micro lens array can be manufactured in three primary shapes (cone, pyramid and hemisphere). Compared to our previous study, the processing time required for laser processing was reduced from approximately 1 hour to less than 30 seconds using the proposed processing method. Therefore, micro lens arrays can be manufactured using our processing method and can be applied to mass productionon large surface areas.

플렉서블 기판 전/후면에서의 레이저를 이용한 ITO/Ag/ITO 전극층의 식각 특성 (Laser Etching Characteristics of ITO/Ag/ITO Conductive Films on Forward/Reverse Sides of Flexible Substrates)

  • 남한엽;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제29권11호
    • /
    • pp.707-711
    • /
    • 2016
  • ITO/Ag/ITO conductive films on PET (polyethylene terephthalate) was etched by a Q-switched diode-pumped neodymiun-doped yttrium vanadate (Nd:YVO4, ${\lambda}=1064nm$) laser. During the laser direct etching, the laser beam was incident on the two different directions of PET and the etching patterns were investigated and analyzed. At a lower repetition rate of laser pulse, the larger laser etched patterns were obtained by laser beam incident on reverse side of PET substrate. On the contrary, at a higher repetition rate, it was possible to find the larger etched patterns in case of the laser beam incidence on forward side of PET substrate. For the laser beam incidence on reverse side, the laser beam is expected to be transferred and scattered through the PET substrate and the laser beam energy is thought to be dependent on the etch laser pulse beam energy.

집속 아르곤 이온 레이저 빔을 이용한 실리콘 기판의 식각 (Etching of Silicon Wafer Using Focused Argon lon Laser Beam)

  • 정재훈;이천;박정호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권4호
    • /
    • pp.261-268
    • /
    • 1999
  • Laser-induced thermochemical etching has been recognized as a new powerful method for processing a variety of materials, including metals, semiconductors, ceramics, insulators and polymers. This study presents characteristics of direct etching for Si substrate using focused argon ion laser beam in aqueous KOH and $CCl_2F_2$ gas. In order to determine process conditions, we first theoretically investigated the temperature characteristics induced by a CW laser beam with a gaussian intensity distribution on a silicon surface. Major process parameters are laser beam power, beam scan speed and reaction material. We have achieved a very high etch rate up to $434.7\mum/sec$ and a high aspect ratio of about 6. Potential applications of this laser beam etching include prototyping of micro-structures of MEMS(micro electro mechanical systems), repair of devices, and isolation of opto-electric devices.

  • PDF