• Title/Summary/Keyword: Laser diodes

Search Result 187, Processing Time 0.022 seconds

Efficacy of an LED toothbrush on a Porphyromonas gingivalis biofilm on a sandblasted and acid-etched titanium surface: an in vitro study

  • Lee, Hae;Kim, Yong-Gun;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si Young;Lee, Jae-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.3
    • /
    • pp.164-173
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the antimicrobial effect of a newly devised toothbrush with light-emitting diodes (LEDs) on Porphyromonas gingivalis attached to sandblasted and acid-etched titanium surfaces. Methods: The study included a control group, a commercial photodynamic therapy (PDT) group, and 3 test groups (B, BL, and BLE). The disks in the PDT group were placed in methylene blue and then irradiated with a diode laser. The B disks were only brushed, the BL disks were brushed with an LED toothbrush, and the BLE disks were placed into erythrosine and then brushed with an LED toothbrush. After the different treatments, bacteria were detached from the disks and spread on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy was performed to visualize bacterial alterations. Results: The number of viable bacteria in the BLE group was significantly lower than that in the other groups (P<0.05). Scanning electron microscopy showed that bacterial cell walls were intact in the control and B groups, but changed after commercial PDT and LED exposure. Conclusions: The findings suggest that an LED toothbrush with erythrosine treatment was more effective than a commercial PDT kit in reducing the number of P. gingivalis cells attached to surface-modified titanium in vitro.

유도결합 $Cl_2/CHF_3, Cl_2/CH_4, Cl_2/Ar $플라즈마를 이용한 InGaN 건식 식각 반응 기구 연구

  • 이도행;김현수;염근영;이재원;김태일
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.249-249
    • /
    • 1999
  • GaN과 같은 III-nitride 반도체 관한 식각 기술의 연구는 blue-emitting laser diode(LD)를 위한 경면(mirror facet)의 형성뿐만아니라 새로운 display 용도의 light emitting diodes (LED), 고온에서 작동되는 광전소자 제조 등에도 그 중요성이 증대되고 있다. 최근에는 III-nitride 물질의 높은 식각속도와 미려하고 수직한 식각형상을 이루기 위하여 ECR(Electron Cyclotron Resonance)이나 ICP(Inductively Coupled Plasma)와 같은 고밀도 플라즈마 식각과 CAIBE(Chemically assisted ion beam etching)를 이용한 연구가 진행되고 있다. 현재 제조되어 지고 있는 LED 및 LD와 같은 광소자의 구조의 대부분은 p-GaN/AlGaN/InGaN(Q.W)/AlGaN/n-GaN 와 같은 여러 층의 형태로 이루어져 있다. 이중 InGaN는 광소자나 전자소자의 특성에 영향을 주는 가장 중요한 부분으로써 현재까지 보고된 식각연구는 undoped GaN에 대부분 집중되고 있고 이에 비해 소자 특성에 핵심을 이루는 InGaN의 식각특성에 관한 연구는 미흡한 상황이다. 본 연구에서는 고밀도 플라즈마원인 ICP 장비를 이용하여 InGaN를 식각하였고, 식각에는 Cl2/CH4, Cl2/Ar 플라즈마를 사용하였다. InGaN의 식각특성에 영향을 미치는 플라즈마의 특성을 관찰하기 위하여 quadrupole mass spectrometry(QMS)와 optical emission spectroscopy(PES)를 사용하였다. 기판 온도는 5$0^{\circ}C$, 공정 압력은 5,Torr에서 30mTorr로 변화시켰고 inductive power는 200~800watt, bias voltage는 0~-200voltage로 변화시켰으며 식각마스크로는 SiO2를 patterning 하여 사용하였다. n-GaN, p-GaN 층 이외에 광소자 제조시 필수적인 InGaN 층을 100% Cl2로 식각한 경우에 InGaN의 식각속도가 GaN에 비해 매우 낮은 식각속도를 보였다. Cl2 gas에 소량의 CH4나 Ar gas를 첨가하는 경우와 공정압력을 감소시키는 경우 식각속도는 증가하였고, Cl2/10%Ar 플라즈마에서 공정 압력을 감소시키는 경우 식각속도는 증가하였고, Cl2/10%CHF3 와 Cl2/10%Ar 플라즈마에서 공정압력을 15mTorr로 감소시키는 경우 InGaN과 GaNrks의 선택적인 식각이 가능하였다. InGaN의 식각속도는 Cl2/Ar 플라즈마의 이온에 의한 Cl2/CHF3(CH4) 플라즈마에서의 CHx radical 형성에 의하여 증가하는 것으로 사료되어 진다.

  • PDF

Development of low cost module for proliferation control of cancer cells using LED and its therapeutic effects (LED를 활용한 저가의 암세포 증식제어 모듈 개발 및 효과)

  • Cho, Kyoungrae;Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1237-1242
    • /
    • 2018
  • Photodynamic therapy has been suggested as an alternative treatment to current cancer therapy which resulting in a variety of side effects because photodynamic therapy targets specific cancer cells and does not have a significant effect on normal cells. Typically, laser was used as a photodynamic therapy, but this was limited due to high cost and heat reaction. However, compact light emitting diodes that can emit light of various wavelengths have been developed at a low cost, which has a great influence on the low cost development of photodynamic therapy equipment. On the other hand, in the study of photodynamic therapy, the data on the direct effect of visible light are relatively small. Therefore, in this paper, we propose a novel cancer therapeutic module by developing a cancer cell proliferation inhibition module based on an Arduino that is relatively inexpensive, and able to use light of various wavelengths.

Strain-induced enhancement of thermal stability of Ag metallization with Ni/Ag multi-layer structure

  • Son, Jun-Ho;Song, Yang-Hui;Kim, Beom-Jun;Lee, Jong-Ram
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.157-157
    • /
    • 2010
  • Vertical-structure light-emitting diodes (V-LEDs) by laser lift-off (LLO) have been exploited for high-efficiency GaN-based LEDs of solid-state lightings. In V-LEDs, emitted light from active regions is reflected-up from reflective ohmic contacts on p-GaN. Therefore, silver (Ag) is very suitable for reflective contacts due to its high reflectance (>95%) and surface plasmon coupling to visible light emissions. In addition, low contact resistivity has been obtained from Ag-based ohmic contacts annealed in oxygen ambient. However, annealing in oxygen ambient causes Ag to be oxidized and/or agglomerated, leading to degradation in both electrical and optical properties. Therefore, preventing Ag from oxidation and/or agglomeration is a key aspect for high-performance V-LEDs. In this work, we demonstrate the enhanced thermal stability of Ag-based Ohmic contact to p-GaN by reducing the thermal compressive stress. The thermal compressive stress due to the large difference in CTE between GaN ($5.6{\times}10^{-6}/^{\circ}C$) and Ag ($18.9{\times}10^{-6}/^{\circ}C$) accelerate the diffusion of Ag atoms, leading to Ag agglomeration. Therefore, by increasing the additional residual tensile stress in Ag film, the thermal compressive stress could be reduced, resulting in the enhancement of Ag agglomeration resistance. We employ the thin Ni layer in Ag film to form Ni/Ag mutli-layer structure, because the lattice constant of NiO ($4.176\;{\AA}$ is larger than that of Ag ($4.086\;{\AA}$). High-resolution symmetric and asymmetric X-ray diffraction was used to measure the in-plane strain of Ag films. Due to the expansion of lattice constant by oxidation of Ni into NiO layer, Ag layer in Ni/Ag multi-layer structure was tensilely strained after annealing. Based on experimental results, it could be concluded that the reduction of thermal compressive stress by additional tensile stress in Ag film plays a critical role to enhance the thermal stability of Ag-based Ohmic contact to p-GaN.

  • PDF

Particle Shapes and Optical Property of Synthesized ZnO with Amine Additives (아민첨가제를 사용하여 합성된 ZnO의 입자형상 및 광학적 특성)

  • Hyeon, Hye-Hyeon;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • Zinc oxide of hexagonal wurzite, is known as n-type semiconductor. It has a wide band gap energy of 3.37 eV and large exciton binding energy of 60 meV. It can be widely applied to gas sensors, laser diodes, dye-sensitized solar cells and degradation of dye waste. The use of microwave hydrothermal synthesis brings a rapid reaction rate, high yield, and energy saving. Amine additives control the different particle shapes because of the chelate effect and formation of hydroxide ion. In this study, zinc nitrate hexahydrate was used as zinc precursor. In addition, ethanolamine, ethylenediamine, diethylenetriamine, and hexamethylenetetramine are used as shape control agent. The pH value was controlled as 11 by NaOH. The shapes of zinc oxide are star-like, rod, flower-like, and circular cone. In order to analyze physical, chemical, and optical properties of ZnO with diverse amine additives, we used XRD, SEM, EDS, FT-IR, UV-Vis spectroscopy, and PL spectroscopy.

A Study on the Electric Circuit Model for the Direct FM Characteristics of DFB Semiconductor Lasers (DFB 반도체 레이저의 직접 주파수변조(DFM) 특성의 전기적 회로모델에 관한 연구)

  • 정순구;전광석;홍완희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2426-2438
    • /
    • 1994
  • In this paper we present for the first time the electric circuit model for direct frequrncy modulation(FM) response of the conventional distributed-feedback(DFB) semiconductor laser diodes. Especially, in this paper, the proposed model includes not only the carrier density modulation effect, but also the temperature modulation effect determining the DFM characteristics of DFB characteristics of DFB semiconductor lasers. The DFM response due to injection current modulation was obtained as a function of modulation frequency from DC to a few GHz. The circuit model representing the temperature modulation effect is obtained from the structure of DFB LD chip and the simulation results are compared with the published experimental results. The circuit model representing the temperature modulation effect is obtained from the structure of DFB LD chip and the simulation results are compared with the published experimental results. The circuit model representing carrier density modulation effect is obtained from the rate equations of DFB lasers and the simulation results are compared with the results that were obtained by the conventional numerical analysis approach. The results showed good agreements.

  • PDF

WDM Optical True Time-Delay for X-Band Phased Array Antennas (X-밴드 위상 배열 안테나를 위한 WDM 광 실시간 지연선로)

  • Jung, Byung-Min;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.162-166
    • /
    • 2007
  • In this paper, we propose a WDM optical true time-delay (OTTD) beam former for phased way antenna (PAA) systems. It is composed of a delay lines matrix and a multiwavelength source with discrete DFB laser diodes. The building block of a delay lines matrix is a $2\times2$ optical MEMS switch with proper fiber-optic delay line connected between cross ports. A $4\times3$ matrix using four DFB lasers has been fabricated with unit time-delay difference of 12 ps. Maximum time-delay error was measured to be -1.74 ps and +1.14 ps at a radiation angle of $46.05^{\circ}$, corresponding to error range of $-2.87^{\circ}\sim+1.88^{\circ}$. By measuring time-delays at six different RF frequencies from 5- to 10-GHz, we verified the true time-delay characteristic of our OTTD.

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

Development of Smart Tote Bags with Marquage Techniques Using Optical Fiber and LEDs (광섬유와 LED를 활용한 마카쥬(marquage) 기법의 스마트 토트백 개발)

  • Park, Jinhee;Kim, Sang Jin;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.1
    • /
    • pp.51-64
    • /
    • 2021
  • The purpose of this study was to develop smart bags that combining fashion-specific trends and smart information technologies such as light-emitting diodes(LED) and optic fibers by grafting marquage techniques that have recently become popular as part of eco-fashion. We applied e-textiles by designing leather tote bags that could show off LED luminescence. A total of two tote bags, a white-colored peacock design and a black-colored paisley design, divided the LED's light-emitting method into two types, incremental lighting and random light-emission to suit each design, and the locations of the optical fibers were also reversed depending upon the design. The production of circuits for the LEDs and optical fibers was based on the design, and a flexible conductive fabric was laser-cut instead of wire line and attached to the circuit-line location. A separate connector was underwent three-dimensional(3D)-modeling and was connected to high-luminosity LEDs and optic fiber bundles. The optical fiber logo part expressed a subtle image using a white-colored LED, which did not offset the LED's sharp luminous effects, suggesting that using LEDs with fiber optics allowed for the expression of each in harmony without being heterogeneous. Overall, the LEDs and fiber optic fabric were well-harmonized in the fashion bag using marquage techniques, and there was no sense of it being a mechanical device. Also, the circuit part was made of conductive fabric, which is an e-textile product that feels the same as a thin, flexible fabric. The study confirmed that the bag was developed as a smart wearable product that could be used in everyday life.

Application of 630-nm and 850-nm Light-emitting Diodes and Microcurrent to Accelerate Collagen and Elastin Deposition in Porcine Skin

  • Kwon, Tae-Rin;Moon, Dong Wook;Kim, Jungwook;Kim, Hyoung Jun;Lee, Seong Jae;Han, Yunhee;Dan, Hee Won;Chi, Sang Hoon;Seong, Hwan Mo;Kim, Hee Jung;Lim, Guei-Sam;Lee, Jungkwan
    • Medical Lasers
    • /
    • v.10 no.2
    • /
    • pp.96-105
    • /
    • 2021
  • Background and Objectives Skin aging is reportedly associated with regulation in collagen and elastin synthesis. This study investigated the potential of combining light-emitting diode (LED) treatments using a 630-nm and 850-nm LED with simultaneous microcurrent application. Materials and Methods The dorsal skin of female pigs was treated with a home-use device. We examined the treatment effects using photography, thermocamera, microscopic pathology, and histological examination to determine the mechanism of action, efficacy, and safety of the procedure. A histological observation was performed using hematoxylin and eosin, Masson's trichrome, Victoria blue, and immunohistochemical staining. We also used the Sircol soluble collagen and elastin assay kit to measure the amounts of collagen and elastin in the porcine back skin tissue after 2 and 6 weeks. Results Evaluation by visual inspection and devices showed no skin damage or heat-induced injury at the treatment site. Histological staining revealed that accurate treatment of the targeted dermis layer effectively enhanced collagen and elastin deposition. Collagen type I, a protein defined by immunohistochemical staining, was overexpressed in the early stages of weeks 2 and 6. Combined therapy findings showed the superior capability of the 630-nm and 850-nm LED procedures to induce collagen; in contrast, elastin induction was more pronounced after microcurrent treatments. Conclusion The home-use LED device, comprising a combination of 630-nm and 850-nm LEDs and microcurrent, is safe and can be used as an adjunctive treatment for self-administered facial rejuvenation.