• Title/Summary/Keyword: Laser applications

검색결과 811건 처리시간 0.032초

Scientific and Engineering Applications of Full-field Swept-source Optical Coherence Tomography

  • Mehta, Dalip Singh;Anna, Tulsi;Shakher, Chandra
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.341-348
    • /
    • 2009
  • We report the development of full-field swept-source optical coherence tomography (SS-OCT) in the wavelength range of 815-870 nm using a unique combination of super-luminescent diode (SLD) as broad-band light source and acousto-optic tunable filter (AOTF) as a frequency-scanning device. Some new applications of full-field SS-OCT in forensic sciences and engineering materials have been demonstrated. Results of simultaneous topography and tomography of latent fingerprints, silicon microelectronic circuits and composite materials are presented. The main advantages of the present system are completely non-mechanical scanning, wide-field, compact and low-cost.

다이오드 레이저를 이용한 연소진단기법 (Combustion Diagnostics Method Using Diode Laser Absorption Spectroscopy)

  • 차학주;김민수;신명철;김세원;김혁주;한재원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.75-83
    • /
    • 2003
  • Diode laser absorption system is advantageous of their non-invasive nature, fast response time, high sensitivity and real-time measurement capability. Furthermore, recent advances in room-temperature, near-IR and visible diode laser sources for telecommunication, optical data storage applications are enabling combustion diagnostics system based on diode laser absorption spectroscopy. So, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor system are now appearing for a variety of applications. The objective of this research is to take advantage of distributed feed-back diode laser and develope new gas sensing system. It experimentally found out that the wavelength, power characteristics as a function of injection current and temperature. In addition to direct absorption and wavelength modulation spectroscopy have been demonstrated in these experiments and have a bright prospect to this diode laser system.

  • PDF

색변조 기술을 이용한 레이저 가공 공정 모니터링 시스템 (Monitoring system of laser materials processing using chromatic modulation technique)

  • 이종명
    • 한국레이저가공학회지
    • /
    • 제4권2호
    • /
    • pp.29-38
    • /
    • 2001
  • A development of in-process and reliable monitoring system in laser materials processing is essential for successful applications toward the real industrial fields. It was known that optical signals induced by laser-matter interactions provide a good indication not only to monitor various defects but also to characterize and identify the process However there are still difficulties to implement the optical monitoring system in real fields since the system is susceptible to the spurious change of the signal affected by the variation of experimental conditions and environmental noises. In this article. a new type of optical monitoring technique named 'chromatic modulation technique' is described as a reliable, robust and sensitive monitor for the applications in laser materials processing in order to tackle the conventional problems in optical system.

  • PDF

Clinical Applications of a Non-ablative Fractional Dual Laser (1550/1927 nm)

  • Chang, Ho Sun;Lim, Nam Kyu
    • Medical Lasers
    • /
    • 제9권2호
    • /
    • pp.110-118
    • /
    • 2020
  • The non-ablative fractional dual laser is equipped with two types of lasers, 1550 nm and 1927 nm in one device, and was approved by the United States Food and Drug Administration in 2013. The advantages of the non-ablative fractional laser (NAFL) include fewer side effects such as erythema, edema, post-laser pigmentation, and scab formation. Thus, the NAFL is preferred by both practitioners and consumers because it is convenient and safe for use. The 1550 nm erbium glass and 1927 nm thulium lasers are representative NAFLs that have been developed separately and are often used as a single-wavelength laser with proven clinical efficacy in various indications. The 1550 nm wavelength laser penetrates the dermis layer and the 1927 nm wavelength laser is effective for epidermal lesions. Therefore, targeting the skin layer can be easily achieved with both the 1550 and 1927 nm lasers, respectively, or in combination. Clinically, the 1550 nm laser is effective in the treatment of mild to moderate sagging and wrinkles, scars, and resurfacing. The 1927 nm laser improves skin texture and treats skin pigmentation and wounds. It can also be used for drug delivery. The selection and utilization rate of NAFL has been increasing in recent times, due to changes in lifestyle patterns and the need for beauty treatments with fewer side effects and short downtime. In this study, we present a plan for safe and effective laser therapy through a review of literature. Clinical applications of the multifunctional NAFL are also described.

Femtosecond Micromachining Applications for Optical Devices

  • Sohn, Ik-Bu;Lee, Man-Seop;Woo, Jeong-Sik
    • Journal of the Optical Society of Korea
    • /
    • 제8권3호
    • /
    • pp.127-131
    • /
    • 2004
  • This paper investigates applications of femtosecond lasers for the micromachining of transparent materials and fabrication of optical devices. We show commercial micromachining examples of transparent materials which have been fabricated for various applications. Near infrared femtosecond laser processing is an attractive method to fabricate three-dimensional optical waveguides into various transparent materials. Focused femtosecond laser pulses induce a permanent refractive-index change only near the focal point. We also demonstrate a Y coupler with the splitting ratio of 1:1 written by femtosecond laser pulses into a fused silica glass. The minimum propagation loss of 0.8 ㏈/㎝ awl the refractive-index change of 0.006-0.01 at the wavelength of 1550 ㎚ were achieved by optimization of the laser fluence.

Long-distance cutting of 10-30 mm thick stainless-steel with a 6-kW fiber laser for applications in nuclear decommissioning

  • Jae Sung Shin;Gwon Lim
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4637-4641
    • /
    • 2023
  • For nuclear decommissioning applications, a study was conducted to investigate the feasibility of using a laser for long-distance cutting in complex structures. Cutting tests were performed on stainless steel plates with thicknesses ranging from 10 mm to 30 mm at distances of 300 mm-700 mm from the laser head, using a laser power of 6 kW. Remarkably, the 10 mm and 20 mm thick stainless-steel plates were successfully cut at a distance of 700 mm from the head. Based on the trends observed in the results, it is anticipated that these thicknesses could also be cut at distances of approximately 1 m. Similarly, the 30 mm thick stainless-steel plate was effectively cut at a distance of 500 mm from the head. To evaluate the amount of secondary waste generated, the kerf width was measured. Due to the long-distance cutting, the average kerf width ranged from 6 mm to 16 mm. Despite the wider kerf width, long-distance cutting holds promise for efficiently handling hard-to-reach targets in nuclear decommissioning scenarios.