• Title/Summary/Keyword: Laser Speckle

Search Result 123, Processing Time 0.024 seconds

Measurements of Inner Defects of the Plate using Dual-beam Shearography (Dual-Beam Shearography를 이용한 물체의 내부결함 측정)

  • Ham, Hyo-Shick;Choi, Sung-Eul
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.239-247
    • /
    • 2005
  • In this study, we have used newly developed dual-beam shearography which is based on laser speckle that includes various information about an object. Among the several shearing techniques, we used Michelson shearing interference technique which is the most powerful. Acrylate plate was used as a sample, which has inner defects and low thermal conductivity. Michelson shearing interferometer was used for obtaining speckle fringes. We also used phase shifting technique to get a phase map. Using single beam illumination, we could obtain mixture of deformation components of both in-plane and out-of-plane. In order to separate the two components, we have used dual-beam shearography technique. We have obtained a speckle pattern of both before and after deformation. Through LS filtering and unwrapping processes, we could find a position and a shape of the inner defects easily. Deformation of the acrylate plate due to thermal heating has occurred mainly in z-direction(out-of-plane) because it has low thermal conductivity. The acrylate plate was deformed only at the restricted area where the electrical heat applied.

A study of the hologram which records the interference of light with computer (컴퓨터로 빛의 간섭을 기록하는 홀로그램(CGH)의 특성 연구)

  • Lee, Jeong-Yeong;Jang, Woo-Yeong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.4
    • /
    • pp.305-312
    • /
    • 2005
  • In this thesis, Lohmann's algorithm and FFT (fast Fourier transform) are used to synthesize binary-phase holograms. FFT computing is carried out for the calculation of complex wavefronts of $128{\times}128$ sampling points of an object that is numerically specified. Then using the Lohmann's algorithm, the amplitude and the phase of complex wavefronts are encoded in binary holograms on each sampling points. PC (personal computer) and laser printer are used to plot binary-phase holograms and CGH (computer generated holograms) films are obtained from this plot by photographic reduction. Holographic images of numerically specified objects are reconstructed from the He-Ne laser and the inverse Fourier optics system. We estimate the quality of holographic images according to the sampling number, application of random phase, amplitude clipping and bleaching the CGH film. We derive optimized conditions to reconstruct better holographic images and to reduce the speckle noise. FFT and Lohmann's algorithm are implemented with MS Visual BASIC 6.0 for the programming of binary-phase hologram.

  • PDF

Smoke Detection Based on RGB-Depth Camera in Interior (RGB-Depth 카메라 기반의 실내 연기검출)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • In this paper, an algorithm using RGB-depth camera is proposed to detect smoke in interrior. RGB-depth camera, the Kinect provides RGB color image and depth information. The Kinect sensor consists of an infra-red laser emitter, infra-red camera and an RGB camera. A specific pattern of speckles radiated from the laser source is projected onto the scene. This pattern is captured by the infra-red camera and is analyzed to get depth information. The distance of each speckle of the specific pattern is measured and the depth of object is estimated. As the depth of object is highly changed, the depth of object plain can not be determined by the Kinect. The depth of smoke can not be determined too because the density of smoke is changed with constant frequency and intensity of infra-red image is varied between each pixels. In this paper, a smoke detection algorithm using characteristics of the Kinect is proposed. The region that the depth information is not determined sets the candidate region of smoke. If the intensity of the candidate region of color image is larger than a threshold, the region is confirmed as smoke region. As results of simulations, it is shown that the proposed method is effective to detect smoke in interior.

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR

  • Kwoun Oh-Ig;Baek Sangho;Lee Hyongki;Sohn Hong-Gyoo;Han Uk;Shum C. K.
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.

Application of Laser Interferometry for Assessment of Surface Residual Stress by Determination of Stress-free State (무잔류 응력상태 결정을 통한 표면 잔류응력장 평가에의 레이저 간섭계 적용)

  • Kim, Dong-Won;Lee, Nak-Kyu;Choi, Tae-Hoon;Na, Kyong-Hoan;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.25-30
    • /
    • 2003
  • The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using electronic speckle pattern interferometry (ESPI). The residual stress fields in case of both single and film/substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 ${\mu}m$ Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the x-ray diffractometer (XRD) for the verification of above residual stress results by ESPI.

  • PDF

Measurement of Vibration Mode Shapes Using Time Average ESPI (시간 평균 ESPI를 이용한 진동 물체의 모우드 형태의 계측)

  • Kang, Young-June;Choi, Jang-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.84-93
    • /
    • 1996
  • Non-destructive inspection techniques using laser have been broading their application areas as well as growing their measurement skills together with the rapid development of circumferential technology like fiber optics, computer and image processing. The ESPI technique is already on the stage of on-line testing with commercial products in developed country nations. Especially, this technique is expected to be applied to the nuclear industry, automobile and aerospace because it is proper for the vibration measurement and it can be applied to objects of a high temperature. This paper describes the use of the ESPI system for measuring vibration patterns on the reflecting objects. Using this system, high-quality Jo fringes for identifying mode shapes are displayed. A bias vibration is introduced into the reference beam to shift the Jo fringes so that fringe shift algorithms can be used to determine vibration amplitude. Using this method, amplitude fields for vibrating objects were obtained directly from the time-average interferograms recorded by the ESPI system.

  • PDF

A Study on Reliability Verification of Resonance Frequency Detection of Vibration Object using Time-average ESPI (시간 평균 ESPI를 이용한 진동 물체의 공진 주파수 검출 신뢰도 검증에 대한 연구)

  • Hong Kyung-Min;Ryu Weon-Jae;Kang Young-Jung;Lee Dong-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.930-933
    • /
    • 2005
  • Non-destructive inspection techniques using laser have been breading their application areas as well as growing their measurement skills together with the rapid development of circumferential technology like fiber optics. computer and image processing The ESPI technique is already on the stage of on-line testing with commercial products in developed country nations. Especially, this technique is expected to be applied to the nuclear industry, automobile and aerospace because it is proper for the vibration measurement and it can be applied to objects of a high temperature. This paper describes the use of the ESPI system for measuring vibration patterns on the reflecting objects. Using this system, high-quality Jo fringes for identifying mode shapes are displayed. A bias vibration is introduced into the reference beam to shift the Jo fringes so that fringe shift algorithms can be used to determine vibration amplitude. Using this method. amplitude fields for vibrating objects were obtained directly from the time-average interferometer recorded by the ESPI system.

  • PDF

A Study on Measurement of In-Plane Displacement using ESPI in Mechanical Structure under torsional load (비틀림하중을 받는 기계구조물의 ESPI를 이용한 면내변위 측정에 관한 연구)

  • Jang, Seok-Won;Lee, Hak-Ju;Choe, Eun-O;Jeong, Chan-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.693-700
    • /
    • 2002
  • Recently, the mechanical structures applied to many industrial products, especially in electronic products, appear to be miniaturized and complicated. This trend makes it difficult to analyze the stress distribution of those mechanical structures and generates new challenges for precise measurement of strain. In order to solve this measurement problem many optical measurement techniques have been suggested. Among those, the ESPI(Electronic Speckle Pattern Interferometry) has been considered as one of the most useful tools. But the shortage of recognition and difficulties of measurement have limited its industrial applications in spite of its excellent capabilities. Therefore in this study, not only the verification of the FEA result but the enhancement of industrial application of ESPI was tried by measuring the in-plane displacement of mechanical structure with ESPI, which is difficult to be measured with strain gauge.

A Study on the Thermal Coefficient Measurements of Special Steel by ESPI at High Temperature (고온에서 ESPI에 의한 특수강의 열팽창계수 측정에 관한 연구)

  • Kim, K.S.;Yang, S.P.;Kim, H.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.20-30
    • /
    • 1993
  • Electric Speckle Pattern Interferometry (ESPI) using a CW-laser, a video system and an image processor was applied to the thermal coefficient measurements on free thermal expansions at high temperatures : ESPI provides the distribution of in-plane displacement resolved in a preselected direction. ESPI retains the merits of little or no surface preparation, no contact with the surface and the real-time presentation of interference fringes. Appling ESPI at high temperatures, several problem which caused the reduction of fringe visibility were encountered. The problem on the turbulence in the hot air surrounding high temperature objects will be solved by using a vacuum chamber. The background radiations from the objects were suppressed considerably by an interference filter. The problem on the oxidation of the object surface could't be solved. The interference fringe, whose spacings were calculated by FFT to avoid human error, were observable up to $800^{\circ}C$. The results measured by ESPI were nearly equal to the data which have already been published, up to about $800^{\circ}C$.

  • PDF

Measurement of Numerical Aperture of Graded-index Plastic Optical Fiber by Using a Variable Aperture (입사광의 크기 조절을 통한 경사굴절률 플라스틱 광섬유의 수치구경 측정기법)

  • Kim, Dae-Kyu;Kim, Bo-Ram;Lee, Byoung-Hwak;Park, Seung-Han
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.5-9
    • /
    • 2011
  • There are technical difficulties in measuring the numerical apertures of multi-mode gradient-index plastic optical fibers (GI-POFs) due to their strong speckle noise originating from dopants, non-uniformity of gradient-index profile, and multi-mode interference. Therefore, we propose a new method of obtaining the numerical aperture by controlling the size of the incident laser beam and measuring the numerical aperture of GI-POF. The results show that we can get a value for the numerical aperture of GI-POF very similar to that measured by the conventional method. We can also obtain the optimum launching condition of input beam and maximum coupling efficiency.