• 제목/요약/키워드: Laser Slit Light

검색결과 28건 처리시간 0.034초

원근 와핑 보정을 이용한 선광원 레이저 거리 검출 (Slit-light Laser Range Finding Using Perspective Warping Calibration)

  • 안현식
    • 융합신호처리학회논문지
    • /
    • 제11권3호
    • /
    • pp.232-237
    • /
    • 2010
  • 본 논문에서는 원근 와핑 보정을 이용한 선광원 레이저 거리 검출 시스템을 제안한다. 제안하는 방법은 카메라와 선광원의 선형성의 왜곡이 있을 경우에도 정확도를 높일 수 있는 장점이 있다. 먼저 보정 패널에 표시된 수직이면서 병렬로 배치된 보정점과 투사된 선광원 레이저의 중심 위치를 검출한다. 얻어진 선광원 레이저의 중심위치는 원근 와핑을 이용하여 가까이 있는 보정점들로부터 실제 좌표를 계산함으로써 보정 데이터를 구하고, 동일한 과정을 보정패널을 이동하면서 반복함으로써 보정 파일을 작성한다. 거리데이터 검출은 입력된 선광원 레이저 영상으로부터 중심위치를 구하고, 보정 파일에서 가장 가까운 보정 데이터를 찾아서 선형 보간으로 검출한다. 실험에서는 제안한 선광원 레이저 거리 검출 방법은 비선형적인 광학계에도 불구하고 130mm 깊이 범위에서 0.08mm 내의 오차로 거리 측정이 가능함을 보인다.

30GW급 대출력 글라스레이저의 개발연구 (A study on development of 30GW class high power glass laser system)

  • 강형부
    • 전기의세계
    • /
    • 제31권5호
    • /
    • pp.383-390
    • /
    • 1982
  • The high power glass laser system was designed and constracted which consisted of a TEM$\_$00/ mode Q-switching oscillator, a pulse shaping, system, two-stage pre-amplifiers, five-stage main amplifiers, a Faraday rotator, and a uni-guide slit. The laser output of 3OGW with the pulsewidth of 2 nsec was obtained by performing the amplifiing experiment in this system. When the laser light with the pulsewidth of 10 nsec was amplified, the large factor of amplification was obtained in the beginning of pulse, but the factor of amplification decreased gradually in the later part of pulse. Therefore, the laser light which has short pulsewidth of-2nsec must be amplified in order to obtain the larger factor of amplification. When the laser beam from the high power glass laser system was irradiated to plasma, the reflected laser light from plasma which occured inevitably could be attenuated to the order of 10$\^$-4/ by using the Faraday rotator and the uni-guide slit.

  • PDF

2-D 슬리트광 비젼 센서를 이용한 물체의 자세측정 (The Position Estimation of a Body Using 2-D Slit Light Vision Sensors)

  • 김정관;한명철
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.133-142
    • /
    • 1999
  • We introduce the algorithms of 2-D and 3-D position estimation using 2-D vision sensors. The sensors used in this research issue red laser slit light to the body. So, it is very convenient to obtain the coordinates of corner point or edge in sensor coordinate. Since the measured points are normally not fixed in the body coordinate, the additional conditions, that corner lines or edges are straight and fixed in the body coordinate, are used to find out the position and orientation of the body. In the case of 2-D motional body, we can find the solution analytically. But in the case of 3-D motional body, linearization technique and least mean squares method are used because of hard nonlinearity.

  • PDF

빔 쉐이핑을 이용한 펨토초 레이저 ITO 박막 가공 깊이 제어에 대한 연구 (Study of ablation depth control of ITO thin film using a beam shaped femtosecond laser)

  • 김훈영;윤지욱;최원석;;황경현;조성학
    • 한국레이저가공학회지
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Indium tin oxide (ITO) is an important transparent conducting oxide (TCO). ITO films have been widely used as transparent electrodes in optoelectronic devices such as organic light-emitting devices (OLED) because of their high electrical conductivity and high transmission in the visible wavelength. Finding ways to control ITO micromachining depth is important role in the fabrication and assembly of display field. This study presented the depth control of ITO patterns on glass substrate using a femtosecond laser and slit. In the proposed approach, a gaussian beam was transformed into a quasi-flat top beam by slit. In addition, pattern of square type shaped by slit were fabricated on the surfaces of ITO films using femtosecond laser pulse irradiation, under 1030nm, single pulse. Using femtosecond laser and slit, we selectively controlled forming depth and removed the ITO thin films with thickness 145nm on glass substrates. In particular, we studied the effect of pulse number on the ablation of ITO. Clean removal of the ITO layer was observed when the 6 pulse number at $2.8TW/cm^2$. Furthermore, the morphologies and fabricated depth were characterized using a optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS).

  • PDF

레이저슬릿광과 이미지블럭을 이용한 경면물체 형상측정알고리즘 (3D shape reconstruction using laser slit beam and image block)

  • 곽동식;조형석;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.93-96
    • /
    • 1996
  • Structured laser light is a widely used method for obtaining 3D range information in Machine Vision. However, The structured laser light method is based on assumption that the surface of objects is Lambertian. When the observed surfaces are highly specularly reflective, the laser light can be detected in various parts on the image due to a specular reflection and secondary reflection. This makes wrong range data and the image sensor unusable for the specular objects. To discriminate wrong range data from obtained image data, we have proposed a new algorithm by using the cross section of image block. To show the performance of the proposed method, a series of experiments was, carried out on: the simple geometric shaped objects. The proposed method shows a dramatic improvement of 3D range data better than the typical structured laser light method.

  • PDF

2D 비젼 센서를 이용한 차체의 3D 자세측정 (The Position Estimation of a Car Using 2D Vision Sensors)

  • 한명철;김정관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.296-300
    • /
    • 1996
  • This paper presents 3D position estimation algorithm with the images of 2D vision sensors which issues Red Laser Slit light and recieves the line images. Since the sensor usually measures 2D position of corner(or edge) of a body and the measured point is not fixed in the body, the additional information of the corner(or edge) is used. That is, corner(or edge) line is straight and fixed in the body. For the body which moves in a plane, the Transformation matrix between the body coordinate and the reference coordinate is analytically found. For the 3D motion body, linearization technique and least mean squares method are used.

  • PDF

샤냑간섭계를 이용한 레이져빔의 Spatial Coherence Function 측정 (Measurement of Spatial Coherence Function of laser beam by using a Sagnac Interferometer)

  • Lee, Chang-Hyouck;Kang, Yoon-Shik;Sung, Yu-Gene;Noh, Jae-Woo
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2007년도 하계학술발표회 논문집
    • /
    • pp.111-112
    • /
    • 2007
  • The spatial coherence function of laser beam was measured by using a Sagnac interferometer and self referencing technique. For laser beam passing through a narrow slit, absolute value of measured spatial coherence function becomes more symmetric as the slit size is reduced. For diverging beams, the spatial coherence function shows fast oscillations in its real and imaginary parts. We explain this by using a Gaussian Schell-model. One can use this measurement method to study and characterize the property of light field coming out of small sample.

  • PDF

Measurement of Spatial Coherence Function of Laser Beam by using a Sagnac Interferometer

  • Lee, Chang-Hyouck;Kang, Yoon-Shik;Sung, Yu-Gene;Noh, Jae-Woo
    • Journal of the Optical Society of Korea
    • /
    • 제11권2호
    • /
    • pp.71-75
    • /
    • 2007
  • The spatial coherence function of a laser beam was measured by using a Sagnac interferometer and self referencing technique. For a laser beam passing through a narrow slit, the absolute value of the measured spatial coherence function becomes more symmetric as the slit size is reduced. For diverging beams, the spatial coherence function shows fast oscillations in its real and imaginary parts. We explain this by using a Gaussian Schell-model. One can use this measurement method to study and characterize the property of the light field coming out of a small sample.

Efficient excitation and amplification of the surface plasmons

  • Iqbal, Tahir
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1381-1387
    • /
    • 2018
  • One dimensional (1D) grating has been fabricated (using focused ion beam) on 50 nm gold (Au) film deposited on higher refractive index Gallium phosphate (GaP) substrate. The sub-wavelength periodic metal nano structuring enable to couple photon to couple with the surface plasmons (SPs) excited by them. These grating devices provide the efficient control on the SPs which propagate on the interface of noble metal and dielectric whose frequency is dependent on the bulk electron plasma frequency of the metal. For a fixed periodicity (${\Lambda}=700 nm$) and slit width (w = 100 nm) in the grating device, the efficiency of SPP excitation is about 40% compared to the transmission in the near-field. Efficient coupling of SPs with photon in dielectric provide field localisation on sub-wavelength scale which is needed in Heat Assisted Magnetic recording (HAMR) systems. The GaP is also used to emulate Vertical Cavity Surface emitting laser (VCSEL) in order to provide cheaper alternative of light source being used in HAMR technology. In order to understand the underlying physics, far-and near-field results has been compared with the modelling results which are obtained using COMSOL RF module. Apart from this, grating devices of smaller periodicity (${\Lambda}=280nm$) and slit width (w = 22 nm) has been fabricated on GaP substrate which is photoluminescence material to observe amplified spontaneous emission of the SPs at wavelength of 805 nm when the grating device was excited with 532 nm laser light. This observation is unique and can have direct application in light emitting diodes (LEDs).

Theoretical and Numerical Study of Cylindrical-vector-mode Radiation Characteristics in Periodic Metallic Annular Slits and Their Applications

  • Kim, Hyuntai;Jeong, Yoonchan
    • Current Optics and Photonics
    • /
    • 제2권5호
    • /
    • pp.482-487
    • /
    • 2018
  • We investigate the radiation characteristics of radially polarized light and azimuthally polarized light through plasmonic subwavelength-scale annular slit (PSAS) structures, by means of both theoretical and numerical methods. Effective-medium theory was utilized to analyze the characteristics of PSAS structures, and the corresponding results showed that PSAS structures can function as a metallic medium for azimuthally polarized light, or as a low-loss dielectric medium for radially polarized light. Numerical calculations based on the finite-element method were also performed, to verify the theoretical analyses. It turned out that the numerical results supported the theoretical results. Moreover, we exploited the PSAS structures in novel nanophotonic elements with dual functionalities that could selectively focus or pass/block incident light, depending on its polarization state. For example, if PSAS structures were implemented in the dielectric region of a metallic Fresnel zone plate, the modified zone plate could function as a blocking element to azimuthally polarized light, yet as a focusing element to radially polarized light. On the contrary, if PSAS structures were implemented in the metallic region of a metallic Fresnel zone plate (i.e. the inverted form of the former), it could function as a focusing element to azimuthally polarized light, yet as a simple transparent element to radially polarized light.