• Title/Summary/Keyword: Laser Scanner

Search Result 547, Processing Time 0.024 seconds

VALIDITY OF SUPERIMPOSITION RANGE AT 3-DIMENSIONAL FACIAL IMAGES (안면 입체영상 중첩시 중첩 기준 범위 설정에 따른 적합도 차이)

  • Choi, Hak-Hee;Cho, Jin-Hyoung;Park, Hong-Ju;Oh, Hee-Kyun;Choi, Jin-Hugh;Hwang, Hyeon-Shik;Lee, Ki-Heon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.149-157
    • /
    • 2009
  • Purpose: This study was to evaluate the validity of superimposition range at facial images constructed with 3-dimensional (3D) surface laser scanning system. Materials and methods: For the present study, thirty adults, who had no severe skeletal discrepancy, were selected and scanned twice by a 3D laser scanner (VIVID 910, Minolta, Tokyo, Japan) with 12 markers placed on the face. Then, two 3D facial images (T1-baseline, T2-30 minutes later) were reconstructed respectably and superimposed in several manners with $RapidForm^{TM}2006$ (Inus, Seoul, Korea) software program. The distances between markers at the same place of face were measured in superimposed 3D facial images and measurement were done all the 12 makers respectably. Results: The average linear distances between the markers at the same place in the superimposed image constructed by upper 2/3 of the face was $0.92{\pm}0.23\;mm$, in the superimposed image constructed by upper 1/2 of the face was $0.98{\pm}0.26\;mm$, in the superimposed image constructed by upper 1/3 of the face and nose area was $0.99{\pm}0.24\;mm$, in the superimposed image constructed by upper 1/3 of the face was $1.41{\pm}0.48\;mm$, and in the superimposed image constructed by whole face was $0.83{\pm}0.13\;mm$. There were no statistically significant differences in the liner distances of the makers placed on the area included in superimposition range used for partial registration methods but there were significant differences in the linear distances of the markers placed on the areas not included in superimposition range between whole registration method and partial registration methods used in this study. Conclusion: The results of the present study suggest that the validity of superimposition is decreased as superimposition range is reduced in the superimposition of 3D images constructed with 3D laser scanner for the same subject.

Development of Rafter Processing Machine and Simulation Verification (서까래 가공기 개발 및 시뮬레이션 검증)

  • Hong, Sung-Min;Ullah, Furqan;Lee, Gun-Soo;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.2
    • /
    • pp.148-154
    • /
    • 2013
  • Han-ok (the Korean traditional house) is famous for its beauty and healthful aspects. However, its construction cost is too high because of the manual process of parts such as rafter, timber, etc. These days, many people want to build a modernized Korean traditional house at a low cost. In order to do so, the rafter machining process is required to be automatized using a CNC machine. It is also observed that, generally the timber does not have a uniform shape. Therefore, it is also needed to examine the timber shape before starting its processing. This paper presents the concept design of the rafter processing CNC machine, and a 3D laser scanning system. The laser scanner is developed to acquire 3D details of the timber shape. Furthermore, the results of simulated experiments are presented to investigate surface roughness during the machining process of the timber. Since cutting parameters largely influence on surface roughness and cusps formation, it is needed to achieve optimal machining parameters. Several experiments were carried out changing cutting parameters such as cutting tool diameter, feed-rate, and spindle speed.

Measurement of Effective Refractive Index of Nematic Liquid Crystal in Fabry-Perot Etalon

  • Ko, Myeong Ock;Kim, Sung-Jo;Kim, Jong-Hyun;Lee, Bong Wan;Jeon, Min Yong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.346-350
    • /
    • 2015
  • We report a measurement of the effective refractive index of a nematic liquid crystal (NLC) inside a Fabry-Perot (FP) etalon according to the applied electric fields. The effective refractive index of the NLC depends on the intensity of the applied electric field. A wavelength-swept laser with a polygon-scanner-based wavelength filter is used as a wide-band optical source to measure the effective refractive index of the NLC. The bandwidth of the optical source is greater than 90 nm around 1300 nm. The fabricated NLC FP etalon consists of glass substrates, gold layers as the electrodes with highly reflective surfaces, polyimide layers as the planar alignment layers, and an LC layer. Furthermore, we measured the Freedericksz transition voltages for three types of NLC FP etalons having thicknesses of $30.6{\mu}m$, $55.4{\mu}m$, and $108.8{\mu}m$. The Freedericksz transition voltages in the three cases are nearly equal. The measured effective refractive indices in the three cases decreased from 1.67 to 1.51 as the applied electric field intensity was increased. Beyond the threshold electric field, the effective refractive indices quickly decreased and eventually saturated at a value of 1.51 for all cases.

Development of a Frontal Collision Detection Algorithm Using Laser Scanners (레이져 스캐너를 이용한 전방 충돌 예측 알고리즘 개발)

  • Lee, Dong-Hwi;Han, Kwang-Jin;Cho, Sang-Min;Kim, Yong-Sun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.113-118
    • /
    • 2012
  • Collision detection plays a key role in collision mitigation system. The malfunction of the collision mitigation system can result in another dangerous situation or unexpected feeling to driver and passenger. To prevent this situation, the collision time, offset, and collision decision should be determined from the appropriate collision detection algorithm. This study focuses on a method to determine the time to collision (TTC) and frontal offset (FO) between the ego vehicle and the target object. The path prediction method using the ego vehicle information is proposed to improve the accuracy of TTC and FO. The path prediction method utilizes the ego vehicle motion data for better prediction performance. The proposed algorithm is developed based on laser scanner. The performance of the proposed detection algorithm is validated in simulations and experiments.

Measurements of Defects after Machining CFRP Holes Using High Speed Line Scan (고속 라인 스캔 방식을 이용한 CFRP 가공 홀 표면 및 내부 결함 검사)

  • Kim, Teaggyum;Kyung, Daesu;Son, Unchul;Park, Sun-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Using a line scan camera and a Galvano mirror, we constructed a high-speed line-scanning microscope that can generate 2D images ($8000{\times}8000pixels$) without any moving parts. The line scanner consists of a Galvano mirror and a cylindrical lens, which creates a line focus that sweeps over the sample. The measured resolutions in the x (perpendicular to line focus) and y (parallel to line focus) directions are both $2{\mu}m$, with a 2X scan lens and a 3X relay lens. This optical system is useful for measuring defects, such as spalling, chipping, delamination, etc., on the surface of carbon fiber reinforced plastic (CFRP) holes after machining in conjunction with adjustments in the angle of LED lighting. Defects on the inner wall of holes are measured by line confocal laser scanning. This confocal method will be useful for analyzing defects after CFRP machining and for fast 3D image reconstruction.

Rock/Soil proportion estimation using image processing technique (광학식 측정방법을 활용한 풍화지반 버럭의 암/토사 구성비율 추정방법)

  • Jin, Kyu-Nam;Jin, Kim-Young;Park, Sung-Wook;Cho, Gye-Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1425-1432
    • /
    • 2010
  • In large construction site, although soil conversion factor is so significant to preliminary design, operation design and calculating the cost of construction that it is important to take reasonable estimation and application, the standard of soil conversion factor for weathered ground doesn't clearly suggested yet. So in this study, at first we obtain the image using DSLR - high resolution camera and Laser scanner in the Haeng-Bok city constructin site, then analysis the ratio of soil and rock using various image processing method(Sobel method, Laplace method, Highpass filter, Hue and Saturation analysis). Mutual comparation with the result of image processing analysis and manual segmentation of 5case image in the cad. As a result, best image processing method was different for each case. In case of high propotion of rock, Laplace was best and in case of high propotion of soil, Highpass was best, and mixed case Laplace was best.

  • PDF

Extracting Image Information of the unmanned-crane automation system Using an Integrated Vision System (통합 비전 시스템을 이용한 무인 크레인 영상 정보 추출)

  • Lee, Ji-Hyun;Kim, Moo-Hyun;Park, Mu-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.545-550
    • /
    • 2011
  • This paper introduces an Integrated Vision System that enables us to detect the image of slabs and coils and get the complete three dimensional location data without any other obstacles in the field of unmanned-crane automation system. Existing vision system research tends to be easily influenced by the environment of the work place and therefore cannot give the exact location information. To overcome these weaknesses, this paper suggests laser scanners should be combined with a CCD camera named Integrated Vision System. The suggested system is expected to help improve the unmanned-crane automation system.

Obstacle Detection for Unmanned Ground Vehicle on Uneven Terrain (비평지용 무인차량을 위한 장애물 탐지)

  • Choe, Tok Son;Joo, Sang Hyun;Park, Yong Woon;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.342-348
    • /
    • 2016
  • We propose an obstacle detection algorithm for unmanned ground vehicle on uneven terrain. The key ideas of the proposed algorithm are the use of two-layer laser range data to calculate the gradient of a target, which is characterized as either ground or obstacles. The proposed obstacle detection algorithm includes 4-steps: 1) Obtain the distance data for each angle from multiple lidars or a multi-layer scan lidar. 2) Calcualate the gradient for each angle of the uneven terrain. 3) Determine ground or obstacle for each angle on the basis of reference gradient. 4) Generate a new distance data for each angle for a virtual laser scanner. The proposed algorithm is verified by various experiments.

State Classification of the Corrosion of Pipes Using a Clustering Algorithm (클러스터링 알고리즘을 이용한 배관의 부식 상태 분류)

  • Cheon, Kang-Min;Shin, Geon-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.91-97
    • /
    • 2022
  • Pipes transport and supply fuel in various categories; however, corrosion occurs because of the external environment, impurities are mixed in the fuel, and substances leak to the outside, which can lead to serious accidents. Therefore, in this study, inspection equipment using a laser scanner was manufactured to classify conditions according to the degree of corrosion of the outer wall of the pipe, and the corrosion height and maximum value of the pipe were obtained from the surface information. Using the k-means method, it was classified into four states, and the standard of the average height and maximum height of corrosion for each state was derived.

A Study on Automatic Space Analysis for Plant Facilities Based on 3D Octree Argorithm by Using Laser Scanning Information

  • Kim, Donghyun;Kwon, Soonwook;Chung, Suwan;Ko, Hyunglyul
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.667-668
    • /
    • 2015
  • While the plant projects grow bigger and global attention to the plant is increasing, efficient space arrangement is not working in plant project because of the complex structure in installing the equipment unlike the construction project. In addition to this, presently, problem in installation process caused by the disagreement between floor plan and real spot is rising. Therefore the target of this research is to solve the problems and reaction differences, caused by changing the space arrangement in installing the equipment of plant construction. And this research suggests the equipment arrangement method for construction and related processes. To solve the problem, 3D cloud point data of space and equipment is collected by 3D laser scanning and the space matching is operated. In processing the space matching, data is simplified by applying the octree algorithm. This research simplifies the 3D configuration data acquired by 3D scanner equipment through the octree algorithm, and by comparing this data, identifies the space for target equipment, and finally suggests the algorithm that makes the auto space arrangement of equipment possible in construction site and also suggests the process to actualize this algorithm.

  • PDF