• Title/Summary/Keyword: Laser Powder Deposition

검색결과 47건 처리시간 0.025초

직접 에너지 적층방식으로 제조된 V과 17-4PH 스테인리스강 이종재료의 접합계면 분석 (Joint Interface Observation of V and 17-4PH Stainless Steel Dissimilar Materials Manufactured by Direct Energy Deposition)

  • 이세환;김호범;김정한
    • 한국분말재료학회지
    • /
    • 제29권1호
    • /
    • pp.8-13
    • /
    • 2022
  • In this study, we have prepared a Ti-6Al-4V/V/17-4 PH composite structure via a direct energy deposition process, and analyzed the interfaces using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The joint interfaces comprise two zones, one being a mixed zone in which V and 17-4PH are partially mixed and another being a fusion zone in the 17-4PH region which consists of Fe+FeV. It is observed that the power of the laser used in the deposition process affects the thickness of the mixed zone. When a 210 W laser is used, the thickness of the mixed zone is wider than that obtained using a 150 W laser, and the interface resembles a serrated shape. Moreover, irrespective of the laser power used, the expected σ phase is found to be absent in the V/17-4 PH stainless steel joint; however, many VN precipitates are observed.

레이저 빔 직경 변화에 따른 17-4 PH 스테인리스 강 DED 적층 조형체의 미세조직 및 경도 변화 (Effect of Laser Beam Diameter on the Microstructure and Hardness of 17-4 PH Stainless Steel Additively Manufactured by Direct Energy Deposition)

  • 김우혁;고의준;김정한
    • 한국분말재료학회지
    • /
    • 제29권4호
    • /
    • pp.314-319
    • /
    • 2022
  • The effect of the laser beam diameter on the microstructure and hardness of 17-4 PH stainless steel manufactured via the directed energy deposition process is investigated. The pore size and area fraction are much lower using a laser beam diameter of 1.0 mm compared with those observed using a laser beam diameter of 1.8 mm. Additionally, using a relatively larger beam diameter results in pores in the form of incomplete melting. Martensite and retained austenite are observed under both conditions. A smaller width of the weld track and overlapping area are observed in the sample fabricated with a 1.0 mm beam diameter. This difference appears to be mainly caused by the energy density based on the variation in the beam diameter. The sample prepared with a beam diameter of 1.0 mm had a higher hardness near the substrate than that prepared with a 1.8 mm beam diameter, which may be influenced by the degree of melt mixing between the 17-4 PH metal powder and carbon steel substrate.

레이저 용융 금속 적층 시 결함 방지를 위한 혼합 분말 적층에 관한 연구 (A Study on the Laser Melting Deposition of Mixed Metal Powders to Prevent Interfacial Cracks)

  • 심도식;이욱진;이슬비;최윤석;이기용;박상후
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.5-11
    • /
    • 2018
  • Direct energy deposition (DED) technique uses a laser heat source to deposit a metal layer on a substrate. Many researchers have used the DED technique to study the hardfacing of molds and dies. The aim of this study is to obtain high surface hardness and a sound bonding between the AISI M4 deposits and a substrate utilizing a mixed powder that contains M4 and AISI P21 powders. To prevent interfacial cracks between the M4 deposits and the substrate, the mixed powder is pre-deposited onto a JIS S45C substrate, before the deposition of M4 powders. Interfacial defects occurring between the deposits and substrate and changes in the microhardness of the intermediate layer were examined. Observations of the cross-sections of deposited specimens revealed that the interfacial cracks appeared in samples with one and two mixed layers regardless of the mixture ratio. However, the crack was removed by increasing the mixture ratio and the number of intermediate layers. Meanwhile, the microhardness in the mixed layer was found to decrease with increasing ratio of P21 powder in the mixture and that in the upper region of the deposited layers was approximately 800 HV, which was attributed to various alloying elements in the M4 powder.

DED 기술을 이용한 고속도 공구강 M4 분말 적층에 관한 연구 (Study of High Speed Steel AISI M4 Powder Deposition using Direct Energy Deposition Process)

  • 이은미;신광용;이기용;윤희석;심도식
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.353-358
    • /
    • 2016
  • Direct energy deposition (DED) is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In recent year, it can be widely used in order to produce hard, wear resistant and/or corrosion resistant surface layers of metallic mechanical parts, such as dies and molds. For the purpose of the hardfacing to achieve high wear resistance and hardness, application of high speed steel (HSS) can be expected to improve the tool life. During the DED process using the high-carbon steel, however, defects (delamination or cracking) can be induced by rapid solidification of the molten powder. Thus, substrate preheating is generally adopted to reduce the deposition defect. While the substrate preheating ensures defect-free deposition, it is important to select the optimal preheating temperature since it also affects the microstructure evolution and mechanical properties. In this study, AISI M4 powder was deposited on the AISI 1045 substrate preheated at different temperatures (room temperature to $500^{\circ}C$). In addition, the micro-hardness distribution, cooling rates, and microstructures of the deposited layers were investigated in order to observe the influence of the substrate preheating on the mechanical and metallurgical properties.

DED 공정으로 제조된 Al-B4C 복합재의 미세조직 및 기계적 특성 (Microstructures and Mechanical Properties of Al-B4C Composites Fabricated by DED Process)

  • 안유정;한주연;최현주;신세은
    • 한국분말재료학회지
    • /
    • 제30권3호
    • /
    • pp.262-267
    • /
    • 2023
  • Boron carbide (B4C) is highly significant in the production of lightweight protective materials when added to aluminum owing to its exceptional mechanical properties. In this study, a method for fabricating Al-B4C composites using high-energy ball milling and directed energy deposition (DED) is presented. Al-4 wt.% B4C composites were fabricated under 21 different laser conditions to analyze the microstructure and mechanical properties at different values of laser power and scan speeds. The composites fabricated at a laser power of 600 W and the same scan speed exhibited the highest hardness and generated the fewest pores. In contrast, the composites fabricated at a laser power of 1000 W exhibited the lowest hardness and generated a significant number of large pores. This can be explained by the influence of the microstructure on the energy density at different values of laser power.

스테인리스강을 사용한 분말 적층 용융 방식의 금속 3차원 프린터에서 제작된 물체의 최소 선폭 측정 (Measurement of minimum line width of an object fabricated by metal 3D printer using powder bed fusion type with stainless steal powder)

  • 손봉국;정연홍;조재흥
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.346-351
    • /
    • 2018
  • 금속 3D 프린팅 기술은 레이저 빔의 초점에 금속분말을 주입하는 방식에 따라 대표적으로 PBF(Powder Bed Fusion)방식과 DED(Direct Energy Deposition)방식으로 나뉜다. DED 방식은 금속 분말 도포와 동시에 레이저를 조사하여 3차원 구조물을 제작하는 금속 3D 프린팅 기술이고, PBF 방식은 일정 높이로 3차원 그래픽을 슬라이싱 한 후 한 층씩 금속 분말을 적층하여 레이저를 이용해 3차원 구조물을 제조하는 방식이다. DED 방식을 사용하면 레이저 클래딩, 금속 용접 등에는 강점을 가지지만 3D 형상을 제작할 경우 밀도가 낮아지는 문제점이 발생한다. DED 방식에서의 구조체 밀도 문제를 해결하기 위해 PBF 방식을 도입하면 상대적으로 밀도가 높은 3차원 구조물을 제작하는데 용이하다. 본 논문에서는 갈바노 스캐너와 광섬유로 전송되는 Nd:YAG 레이저 빔을 이용한 약 $30{\mu}m$ 크기의 스테인리스 강 분말을 이용하는 PBF 방식의 3차원 프린터를 제작하고, 이를 이용하여 얇은 금속 구조물을 제작하였다. 또한 레이저의 조사 횟수, 출력, 초점 크기, 스캐닝 속도에 따른 선폭의 최적조건을 찾았으며, 그 결과 최적 조건은 레이저 조사 횟수 2회, 출력 30 W, 초점 크기 $28.7{\mu}m$, 스캐닝 속도 200 mm/s에서 최소 선폭은 약 $85.3{\mu}m$로 측정되었다.

Fe-Cr계 금속 분말의 직접 레이저 용융을 통해 형성된 적층부 특성 분석 (Characterization of the Deposited Layer Obtained by Direct Laser Melting of Fe-Cr Based Metal Powder)

  • 장정환;주병돈;전찬후;문영훈
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.107-115
    • /
    • 2012
  • Direct laser melting (DLM) is a powder-based additive manufacturing process to produce parts by layer-by-layer laser melting. As the properties of the manufactured parts depend strongly on the deposited laser-melted bead, deposited layers obtained by the DLM process were characterized in this study. This investigation used a 200 W fiber laser to produce single-line beads under a variety of different energy distributions. In order to obtain a feasible range for the two main process parameters (i.e. laser power and scan rate), bead shapes of single track deposition were intensively investigated. The effects of the processing parameters, such as powder layer thickness and scan spacing, on geometries of the deposited layers have also been analyzed. As a result, minimum energy criteria that can achieve a complete melting have been suggested at the given powder layer thickness. The surface roughnesses of the deposited beads were strongly dependent on the overlap ratio of adjacent beads and on the energy distributions of laser power. Through microstructural analysis and hardness measurement, the morphological and mechanical properties of the deposited layers at various overlapped beads have also been characterized.

Luminescence Characteristics of Red Light Emitting (YVO4:Eu Thin-Film Phosphors Deposited on Si Substrate Using Pulsed Laser Deposition

  • Kim, Dong-Kuk;Kang, Wee-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권12호
    • /
    • pp.1859-1862
    • /
    • 2004
  • Europium doped yttrium vanadate ($YVO_4$:Eu) phosphor thin films were grown using a pulsed laser deposition (PLD) technique on silicon substrate. The structural characterization carried out on a series of ($YVO_4$:Eu films at post annealing temperature in the range of 550 $^{\circ}C$-1150 $^{\circ}C$ indicating that films were preferentially (200) oriented at post annealing temperature above 950 $^{\circ}C.$ Photoluminescence of thin film increased with the increase of post annealing temperature and ambient oxygen pressure though the thin film has the powder-like surface morphology at oxygen pressure above 200 mTorr. Photoluminescence decay from $^5D_1$ level of $Eu^{3+}$ show the great concentration dependency, which can be used as a good parameter to control the composition of ($YVO_4$:Eu thin film.

Selective Laser Melting (SLM) 방식 3D Printing으로 제조한 스테인레스 316L 기계적 물성 분석 (Mechanical Properties of 316L manufactured by Selective Laser Melting (SLM) 3D printing)

  • 박순홍;장진영;노용오;배병현;이병호;어두림;조중욱
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.872-876
    • /
    • 2017
  • 금속 소재부품의 제조 형태가 복잡해지고 소비자의 요구가 다양함에 따라 금속 3D 프린팅 연구가 활발히 진행되고 있다. 본 연구에서는 우주 발사체의 엔진 연소 노즐 부품에 적용 가능한 스테인레스 316L계 금속을 3D 프린팅 방식으로 제조하고 이에 대한 기계적, 화학적 특성 상관 연구를 진행하였다. 금속 3D 프린팅 기술은 레이저원을 이용하여 분말을 급속 용융과 응고를 반복됨에 따라 기존의 주조 응고와는 다른 미세 조직 형태를 나타내고, 이에 따라 기계적 물성이 변화함을 관찰하였다. 특히 개재물의 존재에 따라 기계적 특성이 변화하고 공정 조건의 변화에 따라 기공의 형태 및 위치등이 변화하는 것을 확인하였다.

  • PDF

Cu2ZnSnSe4 Thin Films Preparation by Pulsed Laser Deposition Using Powder Compacted Target

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi;Alfaruqi, M.Hilmy;Ahn, Jong-Heon
    • 한국표면공학회지
    • /
    • 제44권5호
    • /
    • pp.185-189
    • /
    • 2011
  • $Cu_2ZnSnSe_4$ thin films for solar absorber application were prepared by pulsed laser deposition of a synthesized $Cu_2ZnSnSe_4$ compound target. The film's composition revealed that the deposited films possess an identical composition with the target material. Further film compositional control toward a stoichiometric composition was performed by optimizing substrate temperature, deposition time and target rotational speed. At the optimum condition, X-ray diffraction patterns of films showed that the films demonstrated polycrystalline stannite single phase with a high degree of (112) preferred orientation. The absorption coefficient of $Cu_2ZnSnSe_4$ thin films were above 104 cm.1 with a band gap of 1.45 eV. At an optimum condition, films were identified as a p type semiconductor characteristic with a resistivity as low as $10^{-1}{\Omega}cm$ and a carrier concentration in the order of $10^{17}cm^{-3}$.