• Title/Summary/Keyword: Laser Kill

Search Result 8, Processing Time 0.022 seconds

Pulse Energy Utilization in Space (우주에서의 펄스 에너지 활용)

  • Choi, Soo-Jin;Han, Tae-Hee;Lee, Hyun-Hee;Lee, Kyung-Cheol;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.58-71
    • /
    • 2009
  • The blast wave released during the initiation of energetic materials gives rise to pulse energy generation, characterized by a sudden increase of potential energy. A highly efficient energy source, sought from pulse-type lasers, may be utilized in various space propulsion and power applications. This paper introduces a scheme of utilizing the laser energy in 1) attitude control of a satellite requiring of a low thrust, 2) innovative laser-induced drug delivery, 3) implosion-based micro piston development, 4) deflecting and zapping of space debris for laser kill purpose, and 5) finally lunar detection using laser induced breakdown spectroscopy.

Photodynamic therapy with chlorin e6-induced cervical cancer cell death (Chlorin e6의 농도별 Photodynamic therapy을 통한 자궁경부암 세포의 사멸도 측정)

  • Lee, Eonjin;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.323-325
    • /
    • 2022
  • In this paper, after administration of Chlorin e6 to kill cervical cancer cells, PDT (photodynamic therapy) using laser or LED was studied for Ce6 concentration and apoptosis by administration time. After photostimulation was applied to cervical cancer cells, qualitative and quantitative evaluation through imaging and quantitative evaluation using CCK-8 were performed. As a result of the experiment, as the concentration of Ce6 increased, a large amount of cells were killed, and it was confirmed that the Ce6+PDT test group killed more. When comparing the LED and the laser, the laser was able to kill cells only at a local location, and the LED showed the result that it was possible to kill the cells in a wide range. In addition, when irradiating a local location, such as a laser, when measuring the cell viability, it is judged to be accurate to image processing the location.

  • PDF

A Study on the Temperature Controlling of Driving Algorithm for the Electronic Shutter by the Laser Beam (레이저빔에 의한 전자셔터 구동 알고리즘의 온도제어에 관한 연구)

  • Lee, Young-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.87-92
    • /
    • 2005
  • This study showed the possibility of the medical treatment by thermal feedback as the laser medical treatment had given by design of the digital I/O interfaces of the electronic shutter to control the laser beam and the temperature controlled algorithm. The electronic shutter is economical and that is designed to be automatically controlled within the range of an extent temperature by such development of its driving interfaces and the controlled algorithm of the electronic shutter. The possibility of local therapy for the patients by the treatment of the laser beam within an extent temperature controlled, is proposed by improvement of the problems on the current treatment methods such as radiotherapy, high frequency treatment or medical therapy of drug stuffs which even kill the normal cells.

  • PDF

Nanosecond Gated Raman Spectroscopy for Standoff Detection of Hazardous Materials

  • Chung, Jin Hyuk;Cho, Soo Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3547-3552
    • /
    • 2014
  • Laser Raman spectroscopy is one of the most powerful technologies for standoff detection of hazardous materials including explosives. Supported by recent development of laser and sensitive ICCD camera, the technology can identify trace amount of unknown substances in a distance. Using this concept, we built a standoff detection system, in which nanosecond pulse laser and nanosecond gating ICCD technique were delicately devised to avoid the large background noise which suppressed weak Raman signals from the target sample. In standoff detection of explosives which have large kill radius, one of the most important technical issues is the detection distance from the target. Hence, we focused to increase the detection distance up to 54 m by careful optimization of optics and laser settings. The Raman spectra of hazardous materials observed at the distance of 54 m were fully identifiable. We succeeded to detect and identify eleven hazardous materials of liquid or solid particles, which were either explosives or chemical substances used frequently in chemical plants. We also performed experiments to establish the limit of detection (LOD) of HMX at 10 m, which was estimated to be 6 mg.

A Study on Inspecting Position Accuracy of DACS Pintle (위치자세제어장치의 핀틀 위치정확도 점검 방안 연구)

  • Tak, Jun Mo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.57-64
    • /
    • 2021
  • In the study, to minimize the error on guided control of the KV (Kill Vehicle) and to secure the hit-to-kill performance, a position accuracy inspection for the DACS (Divert and Attitude Control System) actuation system was proposed. The accuracy performance of the DACS actuation system is one of the most important factors in the interception of ballistic missiles. In order to validate actuation control accuracy of DACS system, an inspection item was set for position accuracy, and the inspection system was designed for DACS pintle. To measure the absolute position value of the DACS pintle, an external measurement system was developed using laser displacement sensors. The inspection system was designed so that it can be compared with the actuation command in real time. The proposed position accuracy inspection system can be inspected not only in a DACS system but also in missile system level. The position accuracy inspection was performed using the designed inspection system, and analysis of the inspection result.

The Evaluation of the atomic composition and the surface roughness of Titanium Implants following Various Laser treatment with air-powder abrasive (레이저 처리후 임프란트 표면 변화에 관한 연구)

  • Kim, Tae-Jung;Lim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.615-630
    • /
    • 2002
  • Various long-term studies have shown that titanium implants as abutments for different types of prostheses have become a predictable adjunct in the treatment of partially or fully edentulous patients. The continuous exposure of dental implants to the oral cavity with all its possible contaminants creates a problem. A lack of attachment, together with or caused by bacterial insult, may lead to peri-implantitis and eventual implant failure. Removal of plaque and calculus deposits from dental titanium implants with procedures and instruments originally made for cleaning natural teeth or roots may cause major alterations of the delicate titanium oxide layer. Therefore, the ultimate goal of a cleaning procedure should be to remove the contaminants and restore the elemental composition of the surface oxide without changing the surface topography and harming the surrounding tissues. Among many chemical and mechanical procedure, air-powder abrasive have been known to be most effective for cleaning and detoxification of implant surface. Most of published studies show that the dental laser may be useful in the treatment of pen-implantitis. $CO_2$ laser and Soft Diode laser were reported to kill bacteria of implant surface. The purpose of this study was to obtain clinical guide by application these laser to implant surface by means of Non-contact Surface profilometer and X-ray photoelectron spectroscopy(XPS) with respect to surface roughness and atomic composition. Experimental rough pure titanium cylinder models were fabricated. All of them was air-powder abraded for 1 minute and they were named control group. And then, the $CO_2$ laser treatment under dry, hydrogen peroxide and wet condition or the Soft Diode laser treatment under Toluidine blue O solution condition was performed on the each of the control models. The results were as follows: 1. Mean Surface roughness(Ra) of all experimental group was decreased than that of control group. But it wasn't statistically significant. 2. XPS analysis showed that in the all experimental group, titanium level were decreased, when compared with control group. 3. XPS analysis showed that the level of oxygen in the experimental group 1, 3($CO_2$ laser treatment under dry and wet condition) and 4(Soft Diode laser was used under toluidine blue O solution) were decreased, when compared with control group. 4. XPS analysis showed that the atomic composition of experimental group 2($CO_2$ laser treatment under hydrogen peroxide) was to be closest to that of control group than the other experimental group. From the result of this study, this may be concluded. Following air-powder abrasive treatment, the $CO_2$ laser in safe d-pulse mode and the Soft Diode laser used with photosensitizer would not change rough titanium surface roughness. Especially, $CO_2$ laser treatment under hydrogen peroxide gave the best results from elemental points of view, and can be used safely to treat peri-implantitis.

Sclerotiorin: a Novel Azaphilone with Demonstrated Membrane Targeting and DNA Binding Activity against Methicillin-Resistant Staphylococcus aureus

  • Dasagrandhi, Chakradhar;Pandith, Anup;Imran, Khalid
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.429-438
    • /
    • 2020
  • The emergence of multi-drug resistant, pathogenic methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health and has created a need for novel functional therapeutic agents. In this study, we evaluated the underlying mechanisms of the anti-MRSA effect of an azaphilone pigment, sclerotiorin (SCL) from Penicillium sclerotiorum. The antimicrobial activity of SCL was evaluated using agar disc diffusion, broth microdilution, time-kill assays and biophysical studies. SCL exhibits selective activity against Gram positive bacteria including MRSA (range, MIC = 128-1028 ㎍/ml) and exhibited rapid bactericidal action against MRSA with a > 4 log reduction in colony forming units within three hours of administration. Biophysical studies, using fluorescent probes and laser or electron microscopy, demonstrated a SCL dose-dependent alternation in membrane potential (62.6 ± 5.0.4% inhibition) and integrity (> 95 ± 2.3%), and the release of UV260 absorbing materials within 60 min (up to 3.2 fold increase, p < 0.01) of exposure. Further, SCL localized to the cytoplasm and hydrolyzed plasmid DNA. While in vitro checkerboard studies revealed that SCL potentiated the antimicrobial activity of topical antimicrobials such as polymixin, neomycin, and bacitracin (Fractional Inhibitory Concentration Index range, 0.26-0.37). Taken together these results suggest that SCL targets the membrane and DNA of MRSA to facilitate its anti-MRSA antimicrobial effect.

Receptor-Mediated Endocytosis of Hepatitis B Virus PreS1d Protein in EBV-Transformed B-Cell line

  • Park, Jung-Hyun;Cho, Eun-Wie;Lee, Dong-Gun;Park, Jung-Min;Lee, Yun-Jung;Choi, Eun-A;Kim, Kill-Lyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.844-850
    • /
    • 2000
  • The specific binding and internalization of viral particles is an essential step for the successful infection of viral pathogens. In the case of the hepatitis B virus (HBV), virions bind to the host cell via the preS domain of the viral surface antigen and are subsequently internalized by endocytosis. HBV-preS specific receptors are primarily expressed on hepatocytes, however, viral DNA and proteins have also been detected in extrahepatic sites, suggsting that celluar recepators for HBV may also exist on extrahepatic cells. Recently, an EBV-transformed B-cell line was identified onto which the preS region binds in a receptor-ligand specific manner. In this study, this specific interaction was further characterized, and the binding region within the preS protein was locaized. Also the internalization after host cell attachment was visualized and analyzed by fluorescence-labeled HBV-preS1 proteins using confocal microscopy. Energy depletion by sodium azide treatment effectively inhibited the internalization of the membrane-bound preS1 ligands, thereby indicating an energy-dependent receptor-mediated endocytotic pathway. Accordingly, the interaction of HBV-pres! with this specific B-cell line may serve as an effective model for an infection pathway in extrahepatic cells.

  • PDF