• 제목/요약/키워드: Laser Fluence

검색결과 114건 처리시간 0.032초

레이저 공정을 이용한 전력용 고유전율 PLT 박막 개발 (Development of high dielectric PLT thin films by laser processing for high power applications)

  • 이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1046-1049
    • /
    • 1998
  • PLT(28) ($Pb_{0.72}La_{0.28}Ti_{0.93}O_3$) dielectric thin films have been deposited on Pt/Ti/$SiO_2$/Si substrates in situ by a laser ablation. We have systematically changed the laser fluence from $0.5\;J/cm^2$ to $3\;J/cm^2$, and deposition temperature from $450^{\circ}C$ to $700^{\circ}C$. The surface morphology was changed from planar grain structure to columnar structure as the nucleation energy was increased. The PLT thin film with columnar structure showed good dielectric properties. It is shown that the deposition temperature strongly affect the film nucleation compared with the laser fluence.

  • PDF

레이저 공정을 이용한 전력용 고유전율 PLT 박막 개발 (Development of high dielectric PLT thin films by laser processing for high power applications)

  • 이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.698-701
    • /
    • 1998
  • PLT(28) ($Pb_{0.72}La_{0.28}Ti_{0.93}O_3$) dielectric thin films have been deposited on Pt/Ti/$SiO_2$/Si substrates in situ by a laser ablation. We have systematically changed the laser fluence from $0.5\;J/cm^2$ to $3\;J/cm^2$, and deposition temperature from $450^{\circ}C$ to $700^{\circ}C$. The surface morphology was changed from planar grain structure to columnar structure as the nucleation energy was increased. The PLT thin film with columnar structure showed good dielectric properties. It is shown that the deposition temperature strongly affect the film nucleation compared with the laser fluence.

  • PDF

레이저 공정을 이용한 전력용 고유전을 PLT 박막 개발 (Development of high dielectric PLT thin films by laser processing for high power applications)

  • 이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.378-381
    • /
    • 1998
  • PLT(28) ($Pb_{0.72}La_{0.28}Ti_{0.93}O_3$) dielectric thin films have been deposited on Pt/Ti/$SiO_2$/Si substrates in situ by a laser ablation. We have systematically changed the laser fluence from $0.5\;J/cm^2$ to $3\;J/cm^2$, and deposition temperature from $450^{\circ}C$ to $700^{\circ}C$. The surface morphology was changed from planar grain structure to columnar structure as the nucleation energy was increased. The PLT thin film with columnar structure showed good dielectric properties. It is shown that the deposition temperature strongly affect the film nucleation compared with the laser fluence.

  • PDF

펨토초급 극초단 펄스레이저에 의해 가열된 실리콘 내의 열전달 특성에 관한 수치해석 (Numerical Analysis on Heat Transfer Characteristics in Silicon Boated by Picosecond-to-Femtosecond Ultra-Short Pulse Laser)

  • 이성혁;이준식;박승호;최영기
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1427-1435
    • /
    • 2002
  • The main aim of the present article is numerically to investigate the micro-scale heat transfer phenomena in a silicon microstructure irradiated by picosecond-to-femtosecond ultra-short laser pulses. Carrier-lattice non-equilibrium phenomena are simulated with a self-consistent numerical model based on Boltzmann transport theory to obtain the spatial and temporal evolutions of the lattice temperature, the carrier number density and its temperature. Especially, an equilibration time, after which carrier and lattice are in equilibrium, is newly introduced to quantify the time duration of non-equilibrium state. Significant increase in carrier temperature is observed for a few picosecond pulse laser, while the lattice temperature rise is relatively small with decreasing laser pulse width. It is also found that the laser fluence significantly affects the N 3 decaying rate of Auger recombination, the carrier temperature exhibits two peaks as a function of time due to Auger heating as well as direct laser heating of the carriers, and finally both laser fluence and pulse width play an important role in controlling the duration time of non-equilibrium between carrier and lattice.

빔 중첩율에 따른 티타늄 합금의 펨토초 레이저 어블레이션 (The Femto Second Laser Induced Ablation on the Titanium Alloy for Various Beam Overlap Ratio)

  • 정일영;강경호;김재도
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.17-23
    • /
    • 2010
  • Titanium alloy is one of the hard processing materials made by the traditional manufacturing method because of the excellent mechanical strength. Ablation of titanium alloy is investigated by using a femtosecond laser which is a regenerative amplified Ti:sapphire laser with 1kHz repetition rate, 184fs pulse duration time and 785nm wavelength. Experiments are carried out under various ablation conditions with different pulse overlap ratios for the rectangular shape and micro hole. Test results show that the ablation characteristic according to pulse overlap ratio of titanium alloy seems to be as non-linear type at the different zone of energy fluence. The optimal condition of rectangular shape processing is obtained at the laser peak power 1.3mW, pulse overlap ratio of 90%, beam gap of $1\;{\mu}m$. The micro hole has a good quality from the pulse overlap ratio of 99% at the same laser peak power. With the optimal processing condition, the fine rectangular shape and micro hole without burr and thermal damage are achieved.

극초단 레이저를 이용한 PC-TEMs 초정밀 가공에 대한 연구 (Polycarbonate Track-Etched Membrane Micromachining by Ultrafast Pulse Laser)

  • 최혜운
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.24-30
    • /
    • 2011
  • PC-TEMs (Polycarbonate Track-Etched membranes) were micro-drilled for biomedical applications by ultrafast pulsed laser. The ablation and damage characteristics were studied on PE-TEMs by assuming porous thin membranes. The experiments were conducted in the range of 2.02 $J/cm^2$ and 8.07$J/cm^2$. The ablation threshold and damage threshold were found to be 2.56$J/cm^2$ and 1.14$J/cm^2$, respectively. While a conical shaped drilled holes was made in lower fluence region, straight shaped holes were drilled in higher fluence region. Nanoholes made the membrane as porous material and ablation characteristics for both bulk and thin film membranes were compared.

엑사이머 레이져를 이용한 실리콘웨이퍼의 미세가공

  • 윤경구;이성국;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1058-1062
    • /
    • 1997
  • Development of laser induced chemical etching technologt with KrF laser are carried out in this study for micromachining of silicon wafer. The paper is devoted to experimental identification of excimer laser induced mechanism of silicon under chlorine pressures(0.02~500torr). Experimental results on pulsed KrF excimer laser etching of silicon in chorine atmosphere are presented. Etching rate dependency on laser fluence and chlorine pressure are discussed on the basis of experimental analysis, it is concluded that accurate digital micro machining process of silicon wafer can achieved by KrF laser induced chemical etching technology.

In Vivo and Ex Vivo Skin Reactions after Multiple Pulses of 1,064-nm, Microlens Array-type, Picosecond Laser Treatment

  • Lyu, Herin;Park, Jinyoung;Lee, Hee Chul;Lee, Sang Ju;Kim, Young Koo;Cho, Sung Bin
    • Medical Lasers
    • /
    • 제9권2호
    • /
    • pp.142-149
    • /
    • 2020
  • Background and Objectives A picosecond-domain laser treatment using a microlens array (MLA) or a diffractive optical element elicits therapeutic micro-injury zones in the skin. This study examined the patterns of tissue reactions after delivering multiple pulses of 1,064-nm, MLA-type, picosecond neodymium:yttrium-aluminum-garnet laser treatment. Materials and Methods Multiple pulses of picosecond laser treatment were delivered to ex vivo human or brown micropig skin and analyzed histopathologically. A high-speed cinematographic study was performed to visualize the multiple pulses of picosecond laser energy-induced skin reactions in in vivo human skin. Results In the ex vivo human skin, a picosecond laser treatment at a fluence of 0.3 J/cm2 over 100 non-stacking passes generated multiple lesions of thermally-initiated laser-induced optical breakdown (TI-LIOB) in the epidermis and dermis. In the ex vivo micropig skin, stacking pulses of 20, 40, 60, 80, and 100 at a fluence of 0.3 J/cm2 generated distinct round to oval zones of tissue coagulation in the mid to lower dermis. High-speed cinematography captured various patterns of twinkling, micro-spot reactions on the skin surface over 100 stacked pulses of a picosecond laser treatment. Conclusion Multiple pulses of 1,064-nm, MLA-type, picosecond laser treatment elicit marked TI-LIOB reactions in the epidermis and areas of round to oval thermal coagulation in the mid to deep dermis.