• Title/Summary/Keyword: Laser Doppler velocimetry measurement

Search Result 29, Processing Time 0.024 seconds

LDV Measurement for the Mixing Effect of the Rotator Shape in a Confined Cylinder (밀폐된 원통내부에서 회전체의 형상에 따른 혼합효과에 대한 LDV 측정)

  • Park, Cheon-Soo;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.720-726
    • /
    • 2001
  • Two-dimensional, angle-resolved LDV(Laser Doppler Velocimetry) measurements of the turbulent rotating flow field in a confined cylinder have been performed. The configurations of interest are flows between a rotating upper disk with a rod attached by a disk or impeller(${\theta}= 90^{\circ},\;45^{\circ}$) and a stationary lower disk in a confined cylinder. The mean flow velocity as well as the turbulent intensity of the flow field have been measured. The results show that the flow is strongly dependent on the position of the impellers or the disk, negligibly affected by the Reynolds number in turbulent flow. It is observed that the mixing effect of the axial flow impeller(${\theta}= 45^{\circ}$) is better than that of the radial flow impeller(${\theta}= 90^{\circ}$) or a disk.

  • PDF

Turbulence Kinetic Energy Budgets of Tip Vortex Generated by a Fixed Wing (고정익 끝완류의 난류 운동에너지 분배 특성)

  • Bae, Hwang;Han, Yong Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1444-1452
    • /
    • 1999
  • The turbulence structure of e. tip vortex generated by e. fixed wing was investigated with the use of two-dimensional laser Doppler velocimetry. The velocity field, composed of circumferential end axial components, was measured on the vertical section to the vortex trail, located at 2C downstream from the wing tip in the incoming flow condition of $Re=2.24{\times}10^5$. A quasi 3-dimensional measurement technique by use of 2-dimensional LDV system was suggested for Reynolds stresses and the higher moments. The validity of this technique was confirmed with the uncertainty analysis. The budget of the turbulence kinetic energy was analyzed by those results in the radial direction of the vortex core. It is resulted that the production is to be very likely balanced with the dissipation in most range of the vortex core.

A Study on the Particle Behavior in Turbulent Pulverized Coal Flame (난류 미분탄화염 내 입자거동에 관한 연구)

  • Hwang, Seung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1111-1118
    • /
    • 2010
  • Combustion measurements based on optical techniques have recently become of major interest as tools not only for clarifying the combustion mechanism but also for validating the computational results for the combustion fields. In this study, the particle behavior in turbulent pulverized coal flame are investigated using advanced optical diagnostics. A laboratory-scale pulverized coal combustion burner is specially fabricated as open type in order to apply various optical measurement techniques. The detailed particle behavior is performed by LDV (laser Doppler velocimetry) and SDPA (shadow Doppler particle analyzer). It is observed that the particle mean diameter increase as the distance from burner increases, and this is found to be caused by the decrease of small particles' diameter and increase of large particles' diameter. This is because of result in the char reaction and the particle swelling due to devolatilization, respectively. The size-classified streamwise velocities of pulverized coal particles in the central region of the jet show the same magnitude, whereas those in the outer region are different depending on the particle size. The results show that the velocity and size-classified diameter of the pulverized coal particles in the flame can be measured well by SDPA.

Measurement of angular velocity using the self-mixing effect of semiconductor laser (되먹임 효과를 이용한 회전체의 속도측정)

  • 이병욱
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.250-254
    • /
    • 2000
  • We have constructed laser Doppler velocimetry system using self-mixing effect with a semiconductor laser. This technology is based on the frequency mixing phenomena which occurs when light scattered back from the moving object into the laser cavity interferes with light inside the laser. We have compared the value of Doppler shifted frequency with the velocity variation of the wheel. Frequency dependence on the angle between the moving direction of rotating aluminum wheel and the incident beam also have been proved. As an illustration of the performance of the velocimeter, velocity measurements of a rotating disk are described. Doppler signal shows a good linear relationship with velocity of rotating disk.

  • PDF

Uncertainty assessment for a towed underwater stereo PIV system by uniform flow measurement

  • Han, Bum Woo;Seo, Jeonghwa;Lee, Seung Jae;Seol, Dong Myung;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.596-608
    • /
    • 2018
  • The present study aims to assess test uncertainty assessment method of nominal wake field measurement by a Stereoscopic Particle Image Velocimetry (SPIV) system in a towing tank. The systematic uncertainty of the SPIV system was estimated from repeated uniform flow measurements. In the uniform flow measurement case, time interval between image frames and uniform flow speed were varied to examine the effects of particle displacement and flow around the SPIV system on the systematic standard uncertainty. The random standard uncertainty was assessed by repeating nominal wake field measurements and the estimated random standard uncertainty was compared with that of laser Doppler velocimetry. The test uncertainty assessment method was applied to nominal wake measurement tests of a very large crude oil carrier model ship. The nominal wake measurement results were compared with existing experimental database by other measurement methods, with its assessed uncertainty.

Analysis of Tumble Decay Mechanism through LDV Measurement in an Engine (LDV측정을 통한 엔진내 텀블감쇄 메카니즘 해석)

  • 강건용;이진욱;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2773-2778
    • /
    • 1994
  • Tumbling motion is very effective for turbulence enhancement during compression process in the cylinder of 4-valve engines. In this paper the tumble decay mechanism for different intake port configuration were measured using laser Doppler velocimetry. Analysis of the tumble decay mechanism was achieved by means of two non-dimensional parameters, defined as tumble eccentricity and shape factor in tumble velocity profile, in addition to the tumble moment.

Visualization and Image Processing for Measurement of Propagational Velocity of Shear Front (유동장의 이동속도측정을 위한 가시화 및 영상처리 방안)

  • Kim Jae-Won;Han Sang-Hoon;Ahn Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1322-1328
    • /
    • 2005
  • The circulation flows passing through the Ekman boundary layer on the rotating disk and transfer the angular momentum into the interior region of the container. Consequently, the circulation enhances the momentum transfer and the interior fluid is divided by a propagating shear front. This investigation focuses on computer vision and image processing technique for analysis of Non-Newtonian Fluids. To visualize marching velocity shear front for the transient flow, a particular shaped particles and light are used. To validate the proposed method, quantitative image are compared with the optical data acquired by a direct measurement of LDV (Laser Doppler Velocimetry).

  • PDF

Study on the Drag Performance of the Flat Plates Treated by Antifouling Paints (방오 도료가 도장된 평판에 대한 항력 성능 연구)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Cho, Seong-Rak;Ahn, Jong-Woo;Cho, Sang-Rae;Kim, Kyung-Rae;Chung, Young-Uok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.399-406
    • /
    • 2013
  • In the present study, the flat plate model test method is developed to evaluate the skin friction of the marine coating in the cavitation tunnel. Six-component force balance is used to measure the profile drag of the flat plate and strut. LDV(laser Doppler velocimetry) technique is also employed to evaluate the drag and to figure out the reason of the drag reduction. The flow velocities above the surface can be used to assess the skin friction, combined with direct force measurement. Since the vortical structure in the coherent turbulence structure influences on the skin friction in the high Reynolds number regime, the interaction between the turbulence structure and the surface wall is paying more attention. This sort of thing is important in the passive control of the turbulent boundary layer because the skin friction can't be determined only by wall condition. As complicated flow phenomena exist around a paint film, systematic measurement and analysis are necessary to evaluate the skin friction appropriately.

Towed Underwater LDV Measurement of the Interaction of a Wire-Type Stimulator and the Boundary Layer on a Flat Plate (예인수조 LDV를 이용한 평판 경계층과 와이어 타입 난류촉진장치의 상호작용에 관한 연구)

  • Park, Jongyeol;Seo, Jeonghwa;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.243-252
    • /
    • 2021
  • The present study aims to investigate the interaction of a wire-type turbulence stimulator and the laminar boundary layer on a flat plate by flow field measurement. For the towing tank tests, a one-dimensional Laser Doppler Velocimetry (LDV) attached on a two-axis traverse was used to measure the streamwise velocity component of the boundary layer flow in zero pressure gradient, disturbed by a turbulence stimulator. The wire diameter was 0.5 and 1.0 mm according to the recommended procedures and guidelines suggested by the International Towing Tank Conference. Turbulence development by the stimulator was identified by the skin friction coefficient, mean and Root Mean Square (RMS) of the streamwise velocity. The laminar boundary layer with the absence of the wire-type stimulator was similar to the Blasius solution and previous experimental results. By the stimulator, the mean and RMS of the streamwise velocity were increased near the wall, showing typical features of the fully developed turbulent boundary layer. The critical Reynolds number was reduced from 2.7×105 to 1.0×105 by the disturbances caused by the wire. As the wire diameter and the roughness Reynolds number (Rek) increased, the disturbances by the stimulator increased RMS of the streamwise velocity than turbulent boundary layer.

Development of LDV(Laser Doppler Velocimetry) for Measuring Three Dimensional Hull Wake of Ship Model in Large Cavitation Tunnel (대형 캐비테이션 터널 내 선박 모형의 3차원 선체 반류 계측을 위한 레이저 유속계 개발)

  • Paik, Bu-Geun;Ahn, Jong-Woo;Seol, Han-Shin;Park, Young-Ha;Kim, Ki-Sup;Cheon, Ho-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.515-521
    • /
    • 2017
  • Large Cavitation Tunnel (LCT) of KRISO enables us to conduct cavitation tests of the propeller attached to a ship model. As the ship model tests are done at rather high Reynolds number of 107~108, flow measurement system such as pitot tube cannot be employed because of structural safety problems in its system and difficulties in installing it within the test section. Thus, KRISO has developed new 3-D LDV system used in large test section of LCT. There are several difficulties in using 3-D LDV, which did not allow efficient operation of it. The first trouble was the calibration using the conventional pin hole. To make the focus with same laser-beam waists at the wanted position, the high spatial resolution CCD is utilized in the calibration procedure for 3-D LDV. The off-axis configuration provides two velocity components in the horizontal plane and on-axis configuration gives third velocity component in the vertical plane. The horizontal velocity components are also obtained in the coincidence mode, which prevents any misleading results in the off-axis configuration. The nominal wake of Aframax tanker model is measured by the developed 3-D LDV system. The measured hull wake showed good agreement with that obtained by CFD calculation.