• 제목/요약/키워드: Large-scale wind power

검색결과 139건 처리시간 0.03초

풍력발전기의 출력 안정화를 위한 에너지 저장장치 용량 산정 사례연구 (Analysis on Required Capacity of Energy Storage System to Mitigate Wind Power Fluctuation)

  • 강민혁;채상헌;안진홍;김일환
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.59-68
    • /
    • 2017
  • In accordance with the policy of local government, the large scale of wind farms have been installed in Jeju power system. However, The intermittent characteristics of wind power output may cause grid voltage and frequency variation, especially in weak power system. One of the solution to solve this problem is installation of Energy storage system (ESS). In this case, the ESS will regulate the active power generated from wind farm to mitigate fluctuation. Actually, the local government of Jeju island constructed ESS connected to Hangwon wind turbine in 2016. From this point, this paper analyzes requirement capacity of ESS to mitigate wind power fluctuation based on measured data from Hangwon wind turbine and ESS. The simulation results will be carried out by Matlab program.

비선형내점법 기반의 풍력발전단지 최적운용 알고리즘 (Optimal Operation Algorithm for Wind Farms Based on Nonlinear Interior Point Method)

  • 이승민;송화창;이장호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.694-695
    • /
    • 2011
  • The recent concerns over the threat of global climate change and the requirements of national reduction of $CO_2$ emission have led to the diversification of energy resources and a large scale integration of renewable resources. In these circumstances, the policy decision currently made by the government sector includes several programs to promote the equipment of large scale generating assets to use wind energy. However, the power systems and wind farms need such innovative operation scheme schemes that maintain an adequate level of system security for continuing growth of renewable resources. This paper presents a method for determining optimal operating points for wind farms by making use of a nonlinear interior point method.

  • PDF

해상풍력 파일 굴착직경 결정을 위한 하부구조물 설계해석 (Design Analysis of Substructure for Offshore Wind Pile Excavation)

  • 이기옥;선민영
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.48-55
    • /
    • 2019
  • With recent rapid increases in the power generation capacity of offshore wind power generators, reliable structural analysis of the large-scale infrastructure needed to install wind power generators at sea is required. Therefore, technology for heavy marine equipment such as barges and excavation equipment is needed. Under submarine conditions, rock drilling technology to install the substructure for offshore wind pile excavation is a very important factor in supporting a wind farm safely under dynamic loads over periods of at least 20 years. After investigating the marine environment and on-site ground excavation for the Saemangeum offshore wind farm, in this study we suggest.

Analysis of losses within SMES system for compensating output fluctuation of wind power farm

  • Park, S.I.;Kim, J.H.;Le, T.D.;Lee, D.H.;Kim, D.J.;Yoon, Y.S.;Yoon, K.Y.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.57-61
    • /
    • 2014
  • Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.

Generation Scheduling with Large-Scale Wind Farms using Grey Wolf Optimization

  • Saravanan, R.;Subramanian, S.;Dharmalingam, V.;Ganesan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1348-1356
    • /
    • 2017
  • Integration of wind generators with the conventional power plants will raise operational challenges to the electric power utilities due to the uncertainty of wind availability. Thus, the Generation Scheduling (GS) among the online generating units has become crucial. This process can be formulated mathematically as an optimization problem. The GS problem of wind integrated power system is inherently complex because the formulation involves non-linear operational characteristics of generating units, system and operational constraints. As the robust tool is viable to address the chosen problem, the modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) algorithm is chosen as the main optimization tool. The intended algorithm is implemented on the standard test systems and the attained numerical results are compared with the earlier reports. The comparison clearly indicates the intended tool is robust and a promising alternative for solving GS problems.

Ordinal Optimization Theory Based Planning for Clustered Wind Farms Considering the Capacity Credit

  • Wang, Yi;Zhang, Ning;Kang, Chongqing;Xu, Qianyao;Li, Hui;Xiao, Jinyu;Wang, Zhidong;Shi, Rui;Wang, Shuai
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1930-1939
    • /
    • 2015
  • Wind power planning aims to locate and size wind farms optimally. Traditionally, wind power planners tend to choose the wind farms with the richest wind resources to maximize the energy benefit. However, the capacity benefit of wind power should also be considered in large-scale clustered wind farm planning because the correlation among the wind farms exerts an obvious influence on the capacity benefit brought about by the combined wind power. This paper proposes a planning model considering both the energy and the capacity benefit of the wind farms. The capacity benefit is evaluated by the wind power capacity credit. The Ordinal Optimization (OO) Theory, capable of handling problems with non-analytical forms, is applied to address the model. To verify the feasibility and advantages of the model, the proposed model is compared with a widely used genetic algorithm (GA) via a modified IEEE RTS-79 system and the real world case of Ningxia, China. The results show that the diversity of the wind farm enhances the capacity credit of wind power.

Coordinated Control Strategy for Power Systems with Wind Farms Integration Based on Phase-plane Trajectory

  • Zeng, Yuan;Yang, Yang;Qin, Chao;Chang, Jiangtao;Zhang, Jian;Tu, Jingzhe
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.20-29
    • /
    • 2018
  • The dynamic characteristics of power systems become more and more complex because of the integration of large-scale wind power, which needs appropriate control strategy to guarantee stable operation. With wide area measurement system(WAMS) creating conditions for realizing realt-ime transient stability analysis, a new coordinated control strategy for power system transient stability control based on phase-plane trajectory was proposed. When the outputs of the wind farms change, the proposed control method is capable of selecting optimal generators to balance the deviation of wind power and prevent transient instability. With small disturbance on the base operating point, the coordinated sensitivity of each synchronous generator is obtained. Then the priority matrix can be formed by sorting the coordinated sensitivity in ascending order. Based on the real-time output change of wind farm, coordinated generators can be selected to accomplish the coordinated control with wind farms. The results in New England 10-genrator 39-bus system validate the effectiveness and superiority of the proposed coordinated control strategy.

Effects of Wind Generation Uncertainty and Volatility on Power System Small Signal Stability

  • Shi, Li-Bao;Kang, Li;Yao, Liang-Zhong;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.60-70
    • /
    • 2014
  • This paper discusses the impacts of large scale grid-connected wind farm equipped with permanent magnet synchronous generator (PMSG) on power system small signal stability (SSS) incorporating wind generation uncertainty and volatility. Firstly, a practical simplified PMSG model with rotor-flux-oriented control strategy applied is derived. In modeling PMSG generator side converter, the generator-voltage-oriented control strategy is utilized to implement the decoupled control of active and reactive power output. In modeling PMSG grid side converter, the grid-voltage-oriented control strategy is applied to realize the control of DC link voltage and the reactive power regulation. Based on the Weibull distribution of wind speed, the Monte Carlo simulation technique based is carried out on the IEEE 16-generator-68-bus test system as benchmark to study the impacts of wind generation uncertainty and volatility on small signal stability. Finally, some preliminary conclusions and comments are given.

Investigation of wind-induced dynamic and aeroelastic effects on variable message signs

  • Meyer, Debbie;Chowdhury, Arindam Gan;Irwin, Peter
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.793-810
    • /
    • 2015
  • Tests were conducted at the Florida International University (FIU) Wall of Wind (WOW) to investigate the susceptibility of Variable Message Signs (VMS) to wind induced vibrations due to vortex shedding and galloping instability. Large scale VMS models were tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. Data was measured for the $0^{\circ}$ and $45^{\circ}$ horizontal wind approach directions and vertical attack angles ranging from $-4.5^{\circ}$ to $+4.5^{\circ}$. Analysis of the power spectrum of the fluctuating lift indicated that vertical vortex oscillations could be significant for VMS with a large depth ratio attached to a structure with a low natural frequency. Analysis of the galloping test data indicated that VMS with large depth ratios, greater than about 0.5, and low natural frequency could also be subject to galloping instability.

풍력발전용 기어리스 이중여자 유도 발전기 (Gearless Doubly-fed Induction Generator for Wind Power Generation)

  • 박태식;문채주;김성환
    • 전기전자학회논문지
    • /
    • 제21권1호
    • /
    • pp.81-84
    • /
    • 2017
  • 본 논문에서는 대형 풍력발전시스템에서 신뢰성 및 품질에 가장 큰 영향을 주는 기계적인 부품에 있어서 증속기어를 제거함으로서 잠재적인 고장 및 전력품질 저하의 문제점을 해결하고자 한다. 제안된 방식은 회전가능한 고정자와 슬립링을 적용하고, 고정자를 회전시킴으로써 기존의 증속기를 갖는 풍력발전시스템과 유사한 발전특성을 확보하고자 한다. 또한, 제안된 방식의 동작과 성능을 확인하기 위해 PSIM 시뮬레이션 패키지를 사용하여 시뮬레이션을 수행하여 성능을 검증하였다.