• Title/Summary/Keyword: Large-scale optimization

Search Result 374, Processing Time 0.025 seconds

Wavelength and Waveband Assignment for Ring Networks Based on Parallel Multi-granularity Hierarchical OADMs

  • Qi, Yongmin;Su, Yikai;Jin, Yaohui;Hu, Weisheng;Zhu, Yi;Zhang, Yi
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.631-637
    • /
    • 2006
  • In this paper we study the optimization issues of ring networks employing novel parallel multi-granularity hierarchical optical add-drop multiplexers (OADMs). In particular, we attempt to minimize the number of control elements for the off-line case. We present an integer linear programming formulation to obtain the lower bound in optimization, and propose an efficient heuristic algorithm called global bandwidth resource assignment that is suitable for the design of large-scale OADM networks.

  • PDF

Hierarchical sampling optimization of particle filter for global robot localization in pervasive network environment

  • Lee, Yu-Cheol;Myung, Hyun
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.782-796
    • /
    • 2019
  • This paper presents a hierarchical framework for managing the sampling distribution of a particle filter (PF) that estimates the global positions of mobile robots in a large-scale area. The key concept is to gradually improve the accuracy of the global localization by fusing sensor information with different characteristics. The sensor observations are the received signal strength indications (RSSIs) of Wi-Fi devices as network facilities and the range of a laser scanner. First, the RSSI data used for determining certain global areas within which the robot is located are represented as RSSI bins. In addition, the results of the RSSI bins contain the uncertainty of localization, which is utilized for calculating the optimal sampling size of the PF to cover the regions of the RSSI bins. The range data are then used to estimate the precise position of the robot in the regions of the RSSI bins using the core process of the PF. The experimental results demonstrate superior performance compared with other approaches in terms of the success rate of the global localization and the amount of computation for managing the optimal sampling size.

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Third Report) : Application to Environment-Conscious Automotive Side-Door Assembly (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제3보) : 환경문제를 고려한 자동차 사이드 도어 어셈블리에의 적용)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.138-144
    • /
    • 2011
  • The design flexibility and robustness have become key factors to handle various sources of uncertainties at the early phase of design. Even though designers are uncertain about which single values to specify, they usually have a preference for certain values over others. In the first and second reports of a four-part paper, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple vehicle side-door impact beam design problem. This report presents the applicability of the proposed design approach to the large-scale multi-objective design optimization with a successful implementation of real vehicle side-door structure design.

Large-Scale Phase Retrieval via Stochastic Reweighted Amplitude Flow

  • Xiao, Zhuolei;Zhang, Yerong;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4355-4371
    • /
    • 2020
  • Phase retrieval, recovering a signal from phaseless measurements, is generally considered to be an NP-hard problem. This paper adopts an amplitude-based nonconvex optimization cost function to develop a new stochastic gradient algorithm, named stochastic reweighted phase retrieval (SRPR). SRPR is a stochastic gradient iteration algorithm, which runs in two stages: First, we use a truncated sample stochastic variance reduction algorithm to initialize the objective function. The second stage is the gradient refinement stage, which uses continuous updating of the amplitude-based stochastic weighted gradient algorithm to improve the initial estimate. Because of the stochastic method, each iteration of the two stages of SRPR involves only one equation. Therefore, SRPR is simple, scalable, and fast. Compared with the state-of-the-art phase retrieval algorithm, simulation results show that SRPR has a faster convergence speed and fewer magnitude-only measurements required to reconstruct the signal, under the real- or complex- cases.

Optimization of the Unducted Auxiliary Ventilation for Large-Opening Underground Limestone Mines (대단면 지하 석회석 광산내 무풍관 국부통기 최적화 연구)

  • Nguyen, Van Duc;Lee, Chang Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.480-507
    • /
    • 2019
  • This paper aims at optimizing the auxiliary ventilation system in large-opening limestone mines with unducted fans. An extensive CFD and also site study were carried out for optimization at the blind entries. The fan location, operating mode, and layout are the parameters for optimization. Since the jet stream discharged from the auxiliary fan is flowing faster than 15 m/s in most of the cases, the stream collides with floor, sides or roof and even with the jet stream generated from the other fan placed upstream. Then, it is likely to lose a large portion of its inertial force and then its ventilation efficiency drops considerably. Therefore, the optimal fan installation interval is defined in this study as an interval that maximizes the uninterrupted flowing distance of the jet stream, while the cross-sectional installation location can be optimized to minimize the energy loss due to possible collision with the entry sides. Consequently, the optimization of the fan location will improve ventilation efficiency and subsequently the energy cost. A number of different three-dimensional computational domains representing a full-scale underground space were developed for the CFD study. The velocity profiles and the CO concentrations were studied to design and optimize the auxiliary ventilation system without duct and at the same time mine site experiments were carried out for comparison purposes. The ultimate goal is to optimize the auxiliary ventilation system without tubing to provide a reliable, low-cost and efficient solution to maintain the clean and safe work environment in local large-opening underground limestone mines.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(2) - Verification of Developed Methodologies and Optimal Active-Control of Flow for Drag Reduction (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(2) - 개발된 기법의 검증 및 드래그 감소를 위한 유체의 최적 액티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.671-680
    • /
    • 2007
  • The objective of this work is to reduce drag on a bluff body within a viscous flow by applying suction or injection of fluid along the surface of the body. In addition to minimizing drag, the optimal solution tends to reduce boundary layer separation and flow recirculation. When discretized by finite elements, the optimal control problem can be posed as a large-scale nonlinearly-constrained optimization problem. The constraints correspond to the discretized form of the Navier-Stokes equations. Unfortunately, solving such large-scale problems directly is essentially intractable. We developed several Sequential Quadratic Programming methods that are tailored to the structure of the control problem. Example problems of laminar flow around an infinite cylinder in two dimensions are solved to demonstrate the methodology. We use these optimal control techniques to study the influence of number of suction/injection holes and location of holes on the resulting optimized flow. We compare the proposed SQP methods against one another, as well as against available methods from the literature, from the point of view of efficiency and robustness. The most efficient of the proposed methods is two orders of magnitude faster than existing methods.

A New Approach for Hierarchical Optimization of Large Scale Non-linear Systems (대규모 비선형 시스템의 새로운 계층별 최적제어)

  • Park, Joon-Hoon;Kim, Jong-Boo
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.2
    • /
    • pp.21-31
    • /
    • 1999
  • This paper presents a new possibility of calculating optimal control for large scale which consist of non-linear dynamic sub-systems using two level hierarchical structures method. And the proposed method is based on the idea of block pulse transformation to simplify the algorithm and its calculation. This algorithm used an expansion around the equilibrium point of the system to fix the second and higher order terms. These terms are compensated for iteratively at the second level by providing a prediction for the states and controls which form of a part of the higher order terms. In this new approach the quadratic penalty terms are not used in the cost function. This allows convergence over a longer time horizon and also provides faster convergence. And the method is applied to the problem of optimization of the synchronous machine. Results show that the new approach is superior to conventional numerical method or other previous algorithm.

  • PDF

A Simulation-based Optimization for Scheduling in a Fab: Comparative Study on Different Sampling Methods (시뮬레이션 기반 반도체 포토공정 스케줄링을 위한 샘플링 대안 비교)

  • Hyunjung Yoon;Gwanguk Han;Bonggwon Kang;Soondo Hong
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.67-74
    • /
    • 2023
  • A semiconductor fabrication facility(FAB) is one of the most capital-intensive and large-scale manufacturing systems which operate under complex and uncertain constraints through hundreds of fabrication steps. To improve fab performance with intuitive scheduling, practitioners have used weighted-sum scheduling. Since the determination of weights in the scheduling significantly affects fab performance, they often rely on simulation-based decision making for obtaining optimal weights. However, a large-scale and high-fidelity simulation generally is time-intensive to evaluate with an exhaustive search. In this study, we investigated three sampling methods (i.e., Optimal latin hypercube sampling(OLHS), Genetic algorithm(GA), and Decision tree based sequential search(DSS)) for the optimization. Our simulation experiments demonstrate that: (1) three methods outperform greedy heuristics in performance metrics; (2) GA and DSS can be promising tools to accelerate the decision-making process.

Production of a Fusion Protein Containing the Antigenic Domain 1 of Human Cytomegalovirus Glycoprotein B

  • Sousa Fani;Ferreira Susana;Queiroz Joao;Domingues Fernanda
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1026-1031
    • /
    • 2006
  • The optimization of the production of a fusion protein containing the antigenic domain 1 (AD-1) is of a great importance, considering its use in diagnostic tests. The fusion protein is produced by the fermentation of a recombinant strain of Escherichia coli containing the plasmid Mbg58, which expresses the AD-1 (aa 484-650) of human cytomegalovirus glycoprotein B as a fusion protein together with aa 1-375 of ${\beta}-galactosidase$. An important characteristic of promoters (lac and derivatives) used in recombinant protein production in E. coli is their inducibility. Induction by IPTG is widely used for basic research; however, its use in large-scale production is undesirable because of its high cost and toxicity. In this work, studies using different inducers and carbon sources for the production of a fusion protein containing the AD-l were performed. The results showed that lactose could be used as an inducer in the fermentation process for the production of this protein, and that expression levels could exceed those achieved with IPTG. The use of lactose for protein expression in E. coli should be extremely useful for the inexpensive, large-scale production of heterologous proteins in E. coli. Addition of sucrose to the fermentation medium improved the yield of recombinant protein, whereas addition of fructose or trehalose decreased the yield.

Electret-based microgenerators under sinusoidal excitations: an analytical modeling

  • Nguyen, Cuong C.;Ranasinghe, Damith C.;Al-Sarawi, Said F.
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.335-347
    • /
    • 2018
  • The fast-growing number of mobile and wearable applications has driven several innovations in small-scale electret-based energy harvesting due to the compatibility with standard microfabrication processes and the ability to generate electrical energy from ambient vibrations. However, the current modeling methods used to design these small scale transducers or microgenerators are applicable only for constant-speed rotations and small sinusoidal translations, while in practice, large amplitude sinusoidal vibrations can happen. Therefore, in this paper, we formulate an analytical model for electret-based microgenerators under general sinusoidal excitations. The proposed model is validated using finite element modeling combined with numerical simulation approaches presented in the literature. The new model demonstrates a good agreement in estimating both the output voltage and power of the microgenerator. This new model provides useful insights into the microgenerator operating mechanism and design trade-offs, and therefore, can be utilized in the design and performance optimization of these small structures.