• Title/Summary/Keyword: Large-scale Building

Search Result 693, Processing Time 0.033 seconds

Study on Development of Steam Curing Method for In-situ production of Precast Concrete members (프리캐스트 콘크리트 부재의 현장생산용 증기 양생 방법 개발 연구)

  • Sung, Soojin;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.71-72
    • /
    • 2014
  • Green Frame is a building frame system to construct a column-beam structure using composite precast concrete members. To reduce the cost of producing precast concrete, in-situ production of members is required. However, when the structural members are produced on site, it needs a large space for production. So, "Just-In-Time" production method should be adopted. For Just-In-Time to be realized, the early strength of members should be ensured for them to be transported. Thus, steam curing to secure the early strength is applied in Green Frame. Yet, a large-scale steam curing system is not possible for in-situ production of precast concrete. A smaller steam curing system is needed. In this regard, the study is aimed to develop a new steam curing method applicable to the in-situ production of precast concrete.

  • PDF

Automation of M.E.P Design Using Large Language Models (대형 언어 모델을 활용한 설비설계의 자동화)

  • Park, Kyung Kyu;Lee, Seung-Been;Seo, Min Jo;Kim, Si Uk;Choi, Won Jun;Kim, Chee Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.237-238
    • /
    • 2023
  • Urbanization and the increase in building scale have amplified the complexity of M.E.P design. Traditional design methods face limitations when considering intricate pathways and variables, leading to an emergent need for research in automated design. Initial algorithmic approaches encountered challenges in addressing complex architectural structures and the diversity of M.E.P types. However, with the launch of OpenAI's ChatGPT-3.5 beta version in 2022, new opportunities in the automated design sector were unlocked. ChatGPT, based on the Large Language Model (LLM), has the capability to deeply comprehend the logical structures and meanings within training data. This study analyzed the potential application and latent value of LLMs in M.E.P design. Ultimately, the implementation of LLM in M.E.P design will make genuine automated design feasible, which is anticipated to drive advancements across designs in the construction sector.

  • PDF

Improvement of Natural Ventilation in a Factory Building Using PIV Technique (PIV 풍동실험을 통한 공장건물의 자연환기 향상 연구)

  • Kang Jong-Hoon;Lee Snag-Jeon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.46-49
    • /
    • 2005
  • Vents at outer walls of a large factory building are very important for natural ventilation. But, if a full-open vent is used, rain comes through the vents. We tried to utilize the natural ventilation effectively using a louver. A 1/120 scale-down building model was placed inside an atmospheric boundary layer simulated in a wind tunnel test section. The effect of louver angle on the ventilation flow inside the factory building was investigated experimentally. Instantaneous velocity fields inside the building model were measured using a 2-frame PIV system with varying the louver angles ($\theta=20^{\circ},\;40^{\circ},\;60^{\circ}$). For the case of $\theta=60^{\circ}$, as the incoming flow into the factory building increases, the inside velocity distribution becomes uniformly.

  • PDF

Performance-based Design of 300 m Vertical City "ABENO HARUKAS"

  • Hirakawa, Kiyoaki;Saburi, Kazuhiro;Kushima, Souichirou;Kojima, Kazutaka
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • In designing a 300 meter high skyscraper expected to be the tallest building in Japan, an earthquake-ridden country, we launched on the full-scale performance based design to ensure redundancy and establish new specifications using below new techniques. The following new techniques are applied because the existing techniques/materials are not enough to meet the established design criteria for the large-scale, irregularly-shaped building, and earth-conscious material saving and construction streamlining for reconstructing a station building are also required: ${\bullet}$ High strength materials: Concrete filled steel tube ("CFT") columns made of high-strength concrete and steels; ${\bullet}$ New joint system: Combination of outer diaphragm and aluminium spray jointing; ${\bullet}$ Various dampers including corrugated steel-plate walls, rotational friction dampers, oil dampers, and inverted-pendulum adaptive tuned mass damper (ATMD): Installed as appropriate; and ${\bullet}$ Foundation system: Piled raft foundation, soil cement earth-retaining wall construction, and beer bottle shaped high-strength CFT piles.

Field Investigation of Debris Flow Hazard Area on the Roadside and Evaluating Efficiency of Debris barrier

  • Lee, Jong Hyun;Lee, Jung Yub;Yoon, Sang Won;Oak, Young Suk;Kim, Jae Jeong;Kim, Seung Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.439-447
    • /
    • 2015
  • In this study, specific sections vulnerable to debris flow damage were selected, and a complete enumeration survey was performed for the sections with debris flow hazards. Based on this, the characteristics of the sections with debris flow hazards and the current status of actions against debris flow were examined, and an efficient installation plan for a debris flow damage prevention method that is required in the future was suggested. The results indicated that in the Route 56 section where the residential density is relatively higher between the two model survey sections, facilities for debris flow damage reduction were insufficient compared to those in the Route 6 section which is a mountain area. It is thought that several sites require urgent preparation of a facility for debris flow damage reduction. In addition, a numerical analysis showed that for debris barriers installed as a debris flow damage prevention method, distributed installation of a number of small-scale barriers facilities within a valley part was more effective than single installation of a large-scale debris barrier at the lower part of a valley.

Economic evaluation for the re-arrangement of accommodation house in ultra large container ship (초대형 컨테이너선의 거주구역 재배치에 대한 경제성 평가)

  • Im Nam-kyun;Choi Kyong-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.529-536
    • /
    • 2005
  • Recently the building of ultra large container ship are discussed among ship building companies and ship operating company who have a tendency to pursue the advantage of large scale of economy. These tendency will be continued for the time being, if ship-building skill and economical efficiency are available. As the enlargement of container ship size becomes hot issues in ship-building markets, the needs for re-arrangement of accommodation house in large container ship are proposed carefully in some researches. This study examined economical efficiency of re-arrangement of accommodation house in ultra large container ship. The separation between accommodation and engine room is proposed through out drawing works in initial design stage and we examined the merits and demerits of the separation in the view of economical efficiency. The RFR(Required Freight Rate) is considered as the objective function to evaluate the re-designed vessel. The economical benefits are analyzed in the view of ship operator and shipyard respectively.

Effect of External Thermal Insulation Composite System with a Non-combustible Calcium Silicate Based Mineral on The Mitigation for Reducing Fast Spread of Flame (불연성 무기 단열재를 화재확산 방지구조로 적용한 외단열 마감시스템의 화재성능)

  • Lee, Jong-Chan;Park, Jong-Chul;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.397-403
    • /
    • 2016
  • As a building energy saving standard strengthened, The number of building installed external thermal insulation composite system(ETICS) using EPS insulation increased. But frequent fire accident in the buildings installed EIFS using EPS led to strengthening of building fire safety regulation. This study is for fire property of EPS ETICS reinforced with noncombustible calcium silicate-based mineral insulation as a fire spread prevention structure(FSPS). Fire test for large scale wall by ISO 13785-2 was applied and results showed EPS EIFS with FSPS got 3~8 times superior fire safety than normal EIFS by visual investigation. Temperature and heat flux measurement results, which data of upside of specimen were lower than downside, also supported fire safety of EIFS with FSPS.

Augmenting external surface pressures' predictions on isolated low-rise buildings using CFD simulations

  • Md Faiaz, Khaled;Aly Mousaad Aly
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.255-274
    • /
    • 2023
  • The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an isolated building are provided based on revised findings. Moving on to the second part, the Silsoe cube model is examined within a horizontally homogeneous computational domain using more accurate turbulence models, such as Large Eddy Simulation (LES) and hybrid RANS-LES models. For computational efficiency, transient simulation settings are employed, building upon previous studies by the authors at the Windstorm Impact, Science, and Engineering (WISE) Lab, Louisiana State University (LSU). An optimal meshing strategy is determined for LES based on a grid convergence study. Three hybrid RANS-LES cases are investigated to achieve desired enhancements in the distribution of mean pressure coefficients on the Silsoe cube. In the final part, a 1:10 scale model of the TTU building is studied, incorporating the insights gained from the second part. The generated flow characteristics, including vertical profiles of mean velocity, turbulence intensity, and velocity spectra (small and large eddies), exhibit good agreement with full-scale (TTU) measurements. The results indicate promising roof pressures achieved through the careful consideration of meshing strategy, time step, domain size, inflow turbulence, near-wall treatment, and turbulence models. Moreover, this paper demonstrates an improvement in mean roof pressures compared to other state-of-the-art studies, thus highlighting the significance of CFD simulations in building aerodynamics.

Preparation and Atomic Force Microscopy (AFM) Characterization of DNA Scaffolds as a Template for Protein Immobilization

  • Kim, Hyeran;Lee, Hyun Uk;Lee, Jouhahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.411.2-411.2
    • /
    • 2014
  • The design of DNA nanostructures is of fundamental importance, the intrinsic value of DNA as a building-block material lies in its ability to organize other bio-molecules with nanometer-scale spacing. Here, we report the fabrication of DNA scaffolds with nano-pores (<10 nm size) that formed easily without the use of additives (i.e., avidin, biotin, polyamine, or inorganic materials) into large-scale structures by assembling DNA molecules at near room temperature ($30^{\circ}C$) and low pH (~5.5). Protein immobilization results also confirmed that a fibronectin (FN) proteins/large scale DNA scaffolds/aminopropylytriethoxysilane (APS)/SiO2/Si substrate with high sensitivity formed in a well-defined manner. The DNA scaffolds can be applied for use with DNA-based biochips, biophysics, and cell biology.

  • PDF

Short term unsteady wind loading on a low-rise building

  • Sterling, M.;Baker, C.J.;Hoxey, R.P.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.403-418
    • /
    • 2003
  • This paper presents an extensive analysis of the short term, unsteady wind loading on a low-rise building. The building is located in a rural environment and only the specific situation of wind flow orthogonal to the long face of the structure is considered. The data is analysed using conventional analysis and less traditional methods such as conditional sampling and wavelet analysis. The nature of the flow field over the building is found to be highly unsteady and complex. Fluctuating pressures on the windward wall are shown to a large extent to be caused by the fluctuations in the upstream flow, whereas extreme pressures on the roof are as a result of high intensity small scale flow structures. On the roof of the building a significant amount of energy is shown to exist at frequencies above 1 Hz.