• Title/Summary/Keyword: Large-eddy simulation

Search Result 522, Processing Time 0.028 seconds

Large eddy simulation using a curvilinear coordinate system for the flow around a square cylinder

  • Ono, Yoshiyuki;Tamura, Tetsuro
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.369-378
    • /
    • 2002
  • The application of Large Eddy Simulation (LES) in a curvilinear coordinate system to the flow around a square cylinder is presented. In order to obtain sufficient resolution near the side of the cylinder, we use an O-type grid. Even with a curvilinear coordinate system, it is difficult to avoid the numerical oscillation arising in high-Reynolds-number flows past a bluff body, without using an extremely fine grid used. An upwind scheme has the effect of removing the numerical oscillations, but, it is accompanied by numerical dissipation that is a kind of an additional sub-grid scale effect. Firstly, we investigate the effect of numerical dissipation on the computational results in a case where turbulent dissipation is removed in order to clarify the differences between the effect of numerical dissipation. Next, the applicability and the limitations of the present method, which combine the dynamic SGS model with acceptable numerical dissipation, are discussed.

Large eddy simulation of turbulent boundary layer effects on stratified fluids in a rotating conical container

  • Lee, Sang-Ki;Bae, Jun-Hong;Hwang, Eyl-Seon;M. Sadasivam
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.75-80
    • /
    • 2000
  • We revisit the arrested Ekman boundary layer problem, using a fully non-linear numerical model with the subgrid dissipation modeled by the large eddy simulation method (LES). The main objective of this study is to find out whether the dynamic balance of the arrested Ekman boundary layer explained by MacCready and Rhines (1991) is valid for high Reynolds number. The model solution indicates that for high Reynolds number and low Richardson number flows, the density anomaly diffusion by near-wall turbulent action may become intense enough to homogenize completely the density structure within the boundary layer, in the direction perpendicular to the sloping wall. Then the buoyancy effect becomes negligible allowing a near-equilibrium Ekman boundary layer flow to persist for a long period.

  • PDF

LARGE-EDDY SIMULATION OF TURBULENT BOUNDARY-LAYER FLOW OVER A URBAN TOPOGRAPHY (도시지형을 지나는 난류 경계층 유동의 대와류 수치모사)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.571-574
    • /
    • 2010
  • Large-eddy simulation has been conducted to simulate turbulent boundary-layer flows over an array of regularly distributed obstacles considering various cases of a wind incident angle. The effect of wind direction was investigated in the square cube array that periodic boundary condition was imposed. Characteristics of the turbulent flow over the obstacle array have been found to be very sensitive to the direction of prevailing wind or of mean wind or of mean pressure gradient but varied with height, specially below the urban canopy. Turbulent statistics are changed sensitively with the direction of mean pressure gradient around 10 degree.

  • PDF

Large eddy simulation of turbulent flow around a wall-mounted cubic obstacle in a channel using Lagrangian dynamic SGS model (Lagrangian Dynamic Sub-grid Scale 모델에 의한 평행평판내 입방체 장애물 주위 유동에 관한 대 와동 모사)

  • Ko, Sang-Cheol;Park, Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • Large eddy simulation has been applied to simulate turbulent flow around a cubic obstacle mounted on a channel surface for a Reynolds number of 40000(based on the incoming bulk velocity and the obstacle height) using a Smagorinsky model and a Lagrangian dynamic model. In order to develop the LES to the practical engineering application, the effect of upwind scheme, turbulent sub-grid scale model were investigated. The computed velocities. turbulence quantifies, separation and reattachment length were evaluated by compared with the previous experimental results.

Large Eddy Simulation on the Vorticity Characteristics of Three-Dimensional Small-Size Axial Fan with Different Operating Points (운전점에 따른 3차원 소형축류홴의 와도 특성에 대한 대규모 와 모사)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.64-70
    • /
    • 2016
  • The unsteady-state, incompressible and three-dimensional large-eddy simulation(LES) was carried out to evaluate the vorticity distribution of a small-size axial fan(SSAF). The X-component vorticity profiles developed around blade tips turn from axial to radial, and diminish the density of distribution according to the increase of static pressure. Otherwise, the Z-component vorticity profiles evenly develop at the region larger than the half radial distance of blade at the operating points of A and B, partly at the trailing-edge region of blade and radially over bellmouth according to the increase of static pressure.

Large Eddy Simulation on the Drag and Static Pressure Acting on the Blade Surface of Three-Dimensional Small-Size Axial Fan with Different Operating Loads (운전부하에 따른 3차원 소형축류홴 날개표면에 작용하는 정압과 항력에 대한 대규모와 모사)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.57-63
    • /
    • 2017
  • The large-eddy simulation(LES) was carried out to evaluate the drag and static pressure acting on the blade surface of a small-size axial fan(SSAF) under the condition of unsteady-state, incompressible fluid and three-dimensional coordination. The axial component of drag coefficient increases with the increase of operating load, but the radial components have negligible sizes regardless of operating loads. Otherwise, the static pressures acting on the blade surfaces of SSAF show different distributions around the operating point of D equivalent to the stall. Also, with the increase of operating load, the static pressures acting on the pressure and suction surfaces of blade concentrate at the tips and leading-edges as a whole.

Large Eddy Simulation of Non-reacting Flow in Bluff-body Combustor (Bluff-body 연소기의 비반응 유동에 대한 대 와동 모사)

  • Kong, Min-Seog;Hwang, Cheol-Hong;Lee, Chang-Eon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.250-257
    • /
    • 2005
  • Large eddy simulation{LES) methodology used to model a bluff-body stabilized non-reacting flow. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using $k-{\epsilon}$ model as well as experimental data. The results showed that the LES and RANS qualitatively well predicted the experimental results, such as mean axial, radial velocities and turbulent kinetic energy. However, in the quantitative analysis, the LES showed a better prediction performance than RANS. Specially, the LES well described characteristics of the recirculation zones, such as air stagnation point and jet stagnation point. Finally, the unsteady phenomena on the Bluff-body, such as the transition of recirculation region and vorticity, was examined with LES methodology.

  • PDF

Large Eddy Simulation of an Isothermal Swirling Flow in a Model Gas Turbine Combustor (모델 가스터빈 연소기에서 등온 선회유동의 대 와동 모사)

  • Hwang, Chul-Hong;Lee, Chang-Eon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.462-468
    • /
    • 2004
  • Large eddy simulation(LES) methodology used to model isothermal non-swirling and swirling flows in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code and characterize swirling flow, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using k -$\epsilon$ model as well as experimental data. The results showed that the LES and RANS well predicted the mean velocity field of a non-swirling flow. Specially, the LES showed a very excellent prediction performance for the corner recirculation zone. In swirling flow, comparing with the results obtained by RANS, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone. Finally, unsteady phenomena of turbulent flow was examined with LES methodology.

  • PDF

Numerical Investigation on Turbulent Flow Characteristics in the Gap connecting with Two parallel Channels using Large Eddy Simulation (평행한 두 사각유로를 연결하는 협소유로내의 난류유동 특성에 관한 대형 와 수치 모사)

  • Hong, Seong-Ho;Seo, Jeong-Sik;Shin, Jong-Keun;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.55-60
    • /
    • 2008
  • Turbulent flow characteristics on the gap of two parallel channels are investigated using LES(large eddy simulation) approach. Two parallel channels have the same cross-section area and are connected by the narrow channel named the gap. Turbulent flow near the gap makes the flow pulsation along the streamwise direction of two channels. The flow condition is the Reynolds number of $2.5{\times}10^{-5}$. We compared the predicted results with the previous experimental results and presented the axial mean velocity, turbulent intensities, Reynolds shear stresses and turbulent kinetic energy.

  • PDF

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.