• Title/Summary/Keyword: Large scale test

Search Result 1,421, Processing Time 0.036 seconds

Analytical Study on Performance Evaluation of Large-Sized Silencer using Geometric Similarity Law (기하상사법을 이용한 대형 소음기의 성능평가에 관한 해석적 연구)

  • Yang, Jun-Hyuk;Lee, Boo-Youn;Kim, Won-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.275-281
    • /
    • 2010
  • In this paper, a geometric similarity law is introduced to the performance test of a large-sized silencer used in ship engine or plant system. A test of scale-down model enable to yield the cost and time saving in developing large-sized silencer considerably. Two types of silencer, resonator and expansion chamber, were analyzed by a theoretical method and an acoustical FEM(finite element method) in order to obtain geometric similarity variables. A method is proposed to estimate the transmission loss of prototype model using the test results of scale-down model. Two actual large-sized silencer, which consist of resonator and expansion chamber, were analysed by an acoustical FE analysis. Consequently, the proposed method predicts effectively the performance of prototype silencers using those of scale-down models.

A Study on Manufacturing and Experimental Techniques for the 1/5th Scale Model of Precast Concrete Large Panel Structure (프리캐스트 콘크리트 대형판 구조물의 1/5 축소모델 제작 및 실험기법 연구)

  • 김상규;이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.198-203
    • /
    • 1995
  • The objective of this study is to provide the information on the techniques of manufacturing and experiment in small scale modeling of precast concrete(P.C.)large panel structures. The adopted scale was 1/5th 4types of experiments were performed : material tests for model concrete and model reinforcement, compressive test of horizontal joint, shear test of vertical joint and cyclic static test of 2-story subassemblage structure. Based on the experimental results, the following conclusions are drawn: (1)Model concrete may have in general larger compressive strength than expected. (2) Model reinforcement can show less ductility if the annealing processes were performed without using vaccuum tube. (3) Failure modes of horizontal and vertical joints were almost same for both prototype and model. But the strength of model appears to be higher than required by similitude law. (4)Hysteretic behavior of 1/5 scale subassemblage model can be made quite similar to prototype's if the ductility of model reinforcement and compressive strength of model concrete could be representative of those of prototype.

  • PDF

On the Large Eddy Simulation of Scalar Transport with Prandtl Number up to 10 Using Dynamic Mixed Model

  • Na Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.913-923
    • /
    • 2005
  • The dynamic mixed model (DMM) combined with a box filter of Zang et. al. (1993) has been generalized for passive scalar transport and applied to large eddy simulation of turbulent channel flows with Prandtl number up to 10. Results from a priori test showed that DMM is capable of predicting both subgrid-scale (SGS) scalar flux and dissipation rather accurately for the Prandtl numbers considered. This would suggest that the favorable feature of DMM, originally developed for the velocity field, works equally well for scalar transport problem. The validity of the DMM has also been tested a posteriori. The results of the large eddy simulation showed that DMM is superior to the dynamic Smagorinsky model in the prediction of scalar field and the model performance of DMM depends to a lesser degree on the ratio of test to grid filter widths, unlike in the a priori test.

Investigation of Large-scale Transmission Tower Grounding Grid with High Amplitude and Uniform Flowing Impulse Current

  • Yang, Shuai;Huang, Jiarui;Wei, Shaodong;Zhou, Wenjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2050-2058
    • /
    • 2018
  • Impulse characteristic of transmission tower grounding grid is needed for lightning protection of transmission line. This paper describes an outdoor experimental test facility established for large-scale grounding grid of transmission tower, made up of four impulse current generators and a circle current return electrode. The amplitude of impulse current is up to 100 kA. The results of the CDEGS simulation and GPR measurement reveal the uniform current distribution in the test arrangement. An impulse test for a square electrode with extended conductors is carried out in condition of three current waveforms with different amplitude. Based on the electrical network model and iterative algorithm method, a calculation model is proposed to simulate the impulse characteristic of large-scale grounding grid considering soil ionization. The curve of impulse resistance against the current amplitude shows the soil ionization both from the simulation and test. Deviation between the simulation and test result is less than 15%.

Analysis on Effect of Debris Flow Energy Mitigation by Arrangement of Cylindrical Countermeasures (원통형 토석류 대책구조물의 배치조건에 따른 에너지 저감효과 분석)

  • Kim, Beomjun;Cho, Heungseok;Han, Kwangdo;Choi, Clarence E.;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.15-27
    • /
    • 2019
  • In this study, in order to analyze the effect of cylindrical baffles on the debris flow energy, small-scale tests were conducted using a flume with cylindrical baffles. Various row numbers of installed baffles were considered as a test condition. To investigate the scale effect of debris flow and cylindrical baffles on flow characteristics, large-scale tests were also performed according to varying row numbers of baffle for same baffle configuration with small-scale tests. Both small- and large-scale test results showed that the increase of row number of baffle increase the energy dissipation effect due to reduction of the velocity and flow depth of debris flow.

Experimental Study for Tensile Softening Response of Plain Concrete (무근 콘크리트 인장연화응답의 실험적 연구)

  • 이상근;강태경;송영철;권용길;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.423-426
    • /
    • 2001
  • In this paper a large scale direct tension test of plain concrete is represented. Two independently controlled actuators were used to ensure a homogeneous tensile field and to avoid secondary flexural stresses. Fracture energies evaluated by a classical prediction equation and this test are compared. The result indicated that the classical prediction equation is not adequate to predict the fracture energy of large sized specimens. From this test, it was determined that the fracture energy obtained from large scale direct tension tests is significantly higher than the one obtained in wedge splitting tests on laboratory sized specimens. But the tensile strength was about half the value determined from splitting tensile strength test with cylindrical specimens.

  • PDF

Large-scale quasi-steady modelling of a downburst outflow using a slot jet

  • Lin, W.E.;Savory, E.
    • Wind and Structures
    • /
    • v.9 no.6
    • /
    • pp.419-440
    • /
    • 2006
  • This article synthesizes the literature on the meteorology, experimental simulation, and wind engineering ramifications of intense downburst outflows. A novel design of a large-scale test facility and experimental evidence of its validity are presented. A two-dimensional slot jet is used to simulate only the outflow region of a downburst. Profiles of mean velocity and turbulence quantities are acquired using hot-wire anemometry. Comparison with the literature provides empirical evidence that supports the current approach. A geometric analysis considers the validity of applying a two-dimensional approximation for downburst wind loading of structures. This analysis is applicable to power transmission lines in particular. The slot jet concept can be implemented in a large boundary layer wind tunnel to enable large-scale laboratory experiments of thunderstorm wind loads on structures.

Seismic Response Analysis of a Large Scale Soil-Structure Interaction Test Structure on Flexible Site (유연지반상 대형내진시험구조물의 지진응답해석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.257-264
    • /
    • 1997
  • Seismic responses of the Hualien large scale seismic test model on a layered soil site are estimated for two recorded earthquakes and the analysis results are then compared and evaluated with the recorded responses. The method adopted for the analysis is based on substructuring method using a lumped parameter model in both the frequency and time domain. the study results indicate that the proposed method can reasonably estimate the earthquake responses of a soil-structure interaction system for engineering purposes.

  • PDF

A Noise Control of Cooler Housing in Large Scale Vertical Motor (대형 수직전동기 Cooler Housing의 이상소음 제어)

  • Joo, W.H.;Kim, D.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.132-137
    • /
    • 2000
  • Recently, a severe noise problem was encountered during a shop test of large scale vertical motor. In order to identify the noise characteristics and propose the countermeasure, a variety of experiments such as sound excitation test and contribution analysis was earned out in addition to ordinary noise and vibration measurements. The results showed that the severe noise level was dominated by an acoustic resonance phenonmenon in the cooler housing and higher sound power of outer fan. Through proper treatments, the noise level could be acceptable.

  • PDF

Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Response using a Real-time Hybrid Test Method (실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가)

  • Chung, Hee-San;Lee, Sung-Kyung;Park, Eun-Churn;Youn, Kyung-Jo;Min, Kyung-Won;Lee, Heon-Jae;Choi, Kang-Min;Moon, Suk-Jun;Jung, Hyung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.655-660
    • /
    • 2007
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

  • PDF