DOI QR코드

DOI QR Code

Analysis on Effect of Debris Flow Energy Mitigation by Arrangement of Cylindrical Countermeasures

원통형 토석류 대책구조물의 배치조건에 따른 에너지 저감효과 분석

  • Kim, Beomjun (Department of Civil Engineering, Gangneung Wonju National University) ;
  • Cho, Heungseok (Department of Civil Engineering, Gangneung Wonju National University) ;
  • Han, Kwangdo (Department of Water Resources, ISAN Corporation) ;
  • Choi, Clarence E. (Department of Civil Engineering, The University of Hong Kong) ;
  • Yune, Chanyoung (Department of Civil Engineering, Gangneung Wonju National University)
  • Received : 2019.07.12
  • Accepted : 2019.09.18
  • Published : 2019.10.01

Abstract

In this study, in order to analyze the effect of cylindrical baffles on the debris flow energy, small-scale tests were conducted using a flume with cylindrical baffles. Various row numbers of installed baffles were considered as a test condition. To investigate the scale effect of debris flow and cylindrical baffles on flow characteristics, large-scale tests were also performed according to varying row numbers of baffle for same baffle configuration with small-scale tests. Both small- and large-scale test results showed that the increase of row number of baffle increase the energy dissipation effect due to reduction of the velocity and flow depth of debris flow.

본 연구에서는 원통형 대책구조물의 설치조건에 따른 토석류의 에너지 저감효과를 분석하기 위해, 원통형 대책구조물을 설치 가능한 소형 수로를 제작하고 구조물의 종방향 설치 수를 변화시켜가면서 실내모형실험을 수행하였다. 또한 토석류와 대책구조물의 크기변화가 흐름특성에 미치는 영향을 확인하기 위해, 대형수로 내에서 소형수로 실험과 동일한 종방향 구조물을 배치하고, 토석류와 대책구조물의 크기를 증가시켜 실험을 수행하였다. 소형 및 대형수로 실험결과, 원통형 대책구조물의 설치 개수가 증가는 토석류의 유속과 흐름깊이를 감소시켜, 토석류의 에너지 저감효과를 증가시키는 것으로 나타났다.

Keywords

References

  1. Choi, C. E., Goodwin, G., Ng C. W. W., Kwan, J. S. H. and Pun W.K. (2016), Coarse granular flow interaction with slitstructures, Geotechnique Letters, Vol. 6, No. 4, pp. 267-274. https://doi.org/10.1680/jgele.16.00103
  2. Choi, S. K., Lee, J. M., Jeong, H. B., Kim, J. H. and Kwon, T. H. (2015), Effect of arrangement of slit-type barriers on debris flow behavior : laboratory-scaled experiment, Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 3, pp. 223-228 (In Korean). https://doi.org/10.9798/KOSHAM.2015.15.3.223
  3. Choi, C. E., Ng, C. W. W., Song, D., Kwan, J. S. H., Shiu, H. Y. K., Ho, K. K. S. and Koo, R. C. H. (2014), Flume investigation of landslide debris-resisting baffles, Canadian Geotechnical Journal, Vol. 51, No. 5, pp. 540-553. https://doi.org/10.1139/cgj-2013-0115
  4. Cho, S. H., Yoo, B. S., Kim, J. H. and Lee, K. S. (2016), Performance assessment for debris mitigation structure by using scale model tests, Journal of Korean Society of Hazard Mitigation, Vol. 16, No. 5, pp. 247-260 (In Korean). https://doi.org/10.9798/KOSHAM.2016.16.5.247
  5. Iverson, R. M., Logan, M., LaHusen, R. G. and Berti, M. (2010), The perfect debris flow : aggregated results from 28 large-scale experiments, Journal of Geophysical Research, Vol. 115, No. F03005, pp. 1-29.
  6. Jung, W. G. (2017), Experimental study on the analysis of effects of debris flow reduction facilities, M.S. Thesis, Gangwon National University, Korea (In Korean).
  7. Jun, K. J., Lee, S. D., Kim, G. H., Lee, S. W. and Yune, C. Y. (2015), Verification of countermeasures by velocity estimation of real scale debris flow test, 6th International Conference on Debris flow Hazard Mitigation : Mechanics, Prediction and Assessment, Japan, DFHM 6TH International Conference on Debris-flow.
  8. Kim, B. J., Han, K. D., Choi, C. E. and Yune, C. Y. (2019), An Experimental study on cylindrical countermeasures for dissipation of debris flow energy, Journal of Korean Geo-Environmental Society, Vol. 20, No. 1, pp. 57-65 (In Korean).
  9. Kim, S. T., Kim, J. J., Kyeon, T. S. and Yoo, H. K. (2018), Study on optimum screen spacing of buttress dam, Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 4, pp. 165-173 (In Korean). https://doi.org/10.9798/kosham.2018.18.4.165
  10. Kim, J. H., Lee, Y. S. and Park, K. B. (2010), A study on model experiment for evaluation of debris flow's impact force characteristics, Journal of Korean Geotechnical Society, Vol. 26, No. 11, pp. 5-15 (In Korean).
  11. KFS (2014), "Erosion Control Technical Manual".
  12. Lim, Y. H., Jeon, G. U., Kim, M. S., Yeom, G. J. and Lee, J. H. (2008), Capture effect of slit dam for debris flow and woody debris with hydraulic model experiment: focusing on a and d type. Proceeding of 2008 Summer Conference of Korean Forest Society, Korean Forest Society, pp. 343-344 (In Korean).
  13. Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H. and Wang, G. (2004), Failure processes in a full-scale landslide experiment using a rainfall simulator, Landslides, Vol. 1, No. 4, pp. 277-288. https://doi.org/10.1007/s10346-004-0034-0
  14. MCT (2007), "Road Design Manual of Mountain Area".
  15. MLIT (2016), "River Design Criteria".
  16. Ng, C. W. W., Choi, C. E., Song, D., Kwan, J. S. H., Shiu, H. Y. K., Ho, K. K. S. and Koo, R. C. H. (2014), Physical modelling of baffles influence on landslide debris mobility, Landslides, Vol. 12, No. 1, pp. 1-18. https://doi.org/10.1007/s10346-014-0476-y
  17. Wang, F., Chen, J. and Chen, X. (2017a), Experimental study on the energy dissipation characteristics of debris flow deceleration baffles, Journal of Mountain Science, Vol. 14, No. 10, pp. 1951-1960. https://doi.org/10.1007/s11629-016-3868-8
  18. Wang, F., Chen, X., Chen, J. and You, Y. (2017b), Experimental study on a debris-flow drainage channel with different types of energy dissipation baffles, Engineering Geology, Vol. 220, pp. 43-51. https://doi.org/10.1016/j.enggeo.2017.01.014
  19. Zhou, G.G.D., Hu, H. S., Song, D., Zhao, T. and Chen, X. Q. (2019), Experimental study on the regulation function of slit dam against debris flows, Landslides, Vol. 16, No. 1, pp. 75-90. https://doi.org/10.1007/s10346-018-1065-2