• Title/Summary/Keyword: Large scale shear test

Search Result 131, Processing Time 0.025 seconds

Testing Gravity with Cosmic Shear Data from the Deep Lens Survey

  • Sabiu, Cristiano G.;Yoon, Mijin;Jee, M. James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.62.2-62.2
    • /
    • 2018
  • From the gaussian, near scale-invariant density perturbations observed in the CMB to the late time clustering of galaxies, CDM provides a minimal theoretical explanation for a variety of cosmological data. However accepting this explanation, requires that we include within our cosmic ontology a vacuum energy that is ~122 orders of magnitude lower than QM predictions, or alternatively a new scalar field (dark energy) that has negative pressure. Alternatively, modifications to Einstein's General Relativity have been proposed as a model for cosmic acceleration. Recently there have been many works attempting to test for modified gravity using the large scale clustering of galaxies, ISW, cluster abundance, RSD, 21cm observations, and weak lensing. In this work, we compare various modified gravity models using cosmic shear data from the Deep Lens Survey as well as data from CMB, SNe Ia, and BAO. We use the Bayesian Evidence to quantify the comparison robustly, which naturally penalizes complex models with weak data support. In this poster we present our methodology and preliminary constraints on f(R) gravity.

  • PDF

Strength Parameters and Shear Behaviors of North-Cheju Basalt Rubble Using Large-scale Triaxial Test (대형삼축압축시험을 이용한 북제주현무암 사석재의 강도정수 및 전단거동)

  • 정철민;김종수;채영수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.147-160
    • /
    • 2002
  • According to the Korean Design Code for port and harbor facilities, bearing capacity of rubble mound under eccentric and inclined load is calculated by the simplified Bishop method, and strength parameters are recommended to be c=0.2kg/$cm^2$ and \phi=35^P\circ}$ fur standard rubble if the compressive strength of parent rock is greater than 300kg/$cm^2$, according to research results by Junichi Mizukami(1991). But this facts have never been verified in Korea because there was no large-scale triaxial test apparatus until 2000 in Korea. For the first time in Korea, the large-scale triaxial test(sample diameter 30cm ; height 60cm) on the rubble originated from porous basalt rock in North-Cheju was accomplished. Then strength parameters for basalt rubble produced in North-Cheju are recommended to be c:0.3kg/$cm^2\; and \phi=36^{\circ}$ if the compressive strength of parent rock is greater than 400kg/$cm^2$. And the shear behavior characteristics of rubble, represented as particle breakage and dilatancy, are investigated.

Investigation of rotation and shear behaviours of complex steel spherical hinged bearings subject to axial tensile load

  • Shi, Kairong;Pan, Wenzhi;Jiang, Zhengrong;Lv, Junfeng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.123-132
    • /
    • 2020
  • Steel spherical hinged bearings have high loading capacity, reliable load transfer, flexible rotation with universal hinge and allowance of large displacement and rotation angle. However, bearings are in complex forced states subject to various load combinations, which lead to the significant influence on integral structural safety. Taking the large-tonnage complex steel spherical hinged bearings of Terminal 2 of Guangzhou Baiyun International Airport as an example, full-scale rotation and shear behaviour tests of the bearings subject to axial tensile load are carried out, and the corresponding finite element simulation analyses are conducted. The results of experiments and finite element simulations are in good agreement with the coincident development tendency of stress and deformation. In addition, the measured rotational moment is less than the calculated moment prescriptive by the code, and the relationship between horizontal displacement and horizontal shear force is linear. Finally, based on these results, the rotation and shear stiffness models of bearings subject to axial tensile load are proposed for the refinement analysis of integral structure.

Experimental study on seismic performance of coupling beams not designed for ductility

  • Lam, S.S.E.;Wu, B.;Liu, Z.Q.;Wong, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.317-334
    • /
    • 2008
  • Seismic performance of coupling beams not designed for ductility is examined. Eight 1:4 scale coupling beam specimens, with seven reinforced concrete sections and one composite section, were tested under cycles of push-pull action. Characteristics of the specimens include moderate shear span ratio in the range of 2.5-3.5, high main reinforcement ratio at 3-4% and small to large stirrup spacing with 90- degree hooks. All the reinforced concrete specimens failed in a brittle manner. Displacement ductility of specimens with large stirrup spacing (${\geq}$140 mm) is in the range of 3 to 5. Seismic performance of the specimens is also examined using the ultimate drift angle and the amount of energy dissipated. Correlating the test data, an empirical relationship is proposed to estimate the ultimate drift angle of a class of coupling beams considered in the study not designed for ductility.

A Case Study about the Slope Collapse and Reinforcement Method on the Infinite Slope (무한사면에서의 사면붕괴와 보강대책 사례연구)

  • You Byung-Ok;Hong Jung-Pyo;Jun Jong-Hern;Lee Tae-Sun;Min Kyoung-Nam
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.146-155
    • /
    • 2006
  • The target slope of this study, formed during the construction of highway, is the very high infinite slope where sliding began along the discontinuity. Although an attempt was made to stabilize the upper part of the slope by installing the rock anchors, large scale failure was occurred at the lower part if the reinforced area. Afterwards, subsequent failures were observed two times. To investigate the cause of the failure, residual shear strength was measured by performing the direct shear test of rock specimen of the site. The anchor design was based on the pull-out test. Considering the slope surface where the undulation was severe and the variation of strength was very large, buttressing was used to obtain the required anchoring capacity.

Development and Verification of a Large Scale Resonant Column Testing System (대형 공진주시험기의 개발 및 검증)

  • Kim, Nam-Ryong;Ha, Ik-Soo;Shin, Dong-Hoon;Kim, Min-Seub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.295-304
    • /
    • 2012
  • In this study, a resonant column testing system which is the largest in Korea has been developed to evaluate the dynamic deformation characteristics of coarse granular geomaterials, and the performance and the applicability of the testing system have been verified. The system has been developed as a typical Stokoe type device whose boundary conditions are fixed bottom and free top with additional mass, and can adopt a large specimen with 200 mm in diameter and 400 mm in height. The driving and measurement instruments are configured as high performance and precision systems, hence the automated testing system is appropriate to drive enough stress and to measure the behavior precisely for the test in practical manner. The dynamic response of the mechanical components and the applicability of the system have been evaluated using metal specimens as well as polyurethane specimens, and its precision was verified by comparing its results with those from other equipment and/or methods. To confirm the applicability of the large system for coarse geomaterials, the resonant column test results from both large and normal scale apparatus for the same material were compared and it was found that the result can be partially affected by scale. Finally, the dynamic deformation characteristics of coarse geomaterial which is used for construction of large dam was evaluated using the large system and its practicality could be confirmed.

Development of the intermittency turbulence model for a plane jet flow (자유 평면 제트유동 해석을 위한 간혈도 난류모델의 개발)

  • 조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.528-536
    • /
    • 1987
  • In a turbulent free shear flow, the large scale motion is characterized by the intermittent flow which arises from the interaction between the turbulent fluid and the irrotational fluid of the environment through the mean velocity gradient. This large scale motion causes a bulk convection whose effect is similar to the spatial diffusion process. In this paper, the total diffusion process is proposed to be approximated by weighted sum of the bulk convection due to the large scale motion and the usual gradient diffusion due to small scale motion. The diffusion term in conventional .kappa.-.epsilon. model requires on more equation of the intermittency transport equation. A production term of this equation means mass entrainment from the irrotational fluid to the turbulent one. In order to test the validity of the proposed model, a plane jet is predicted by this method. Numerical results of this model is found to yield better agreement with experiment than the standard .kappa.-.epsilon. model and Byggstoyl & Kollmann's model(1986). Present hybrid diffusion model requires further tests for the check of universality of model and for the model constant fix.

Behaviour Characteristics of Sand Compaction Pile with varying Area Replacement Ratio (모래다집말뚝(SCP)의 치환율 변화에 따른 거동 특성 연구)

  • 박용원;김병일;윤길림;이상익;문대중;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.117-128
    • /
    • 2000
  • Sand compaction pile(SCP) is one of the ground improvement techniques which is being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model test and large-scale direct shear test were performed to investigate the effects of area replacement ratio of composite ground in order to find out the optimum value of area replacement ratio for the ground improvement purpose. Area replacement ratios of 20%, 30%, 40%, 50%, 60% were chosen respectively in the model tests to study the effects of area replacement ratio on variations of stress concentration ratio, settlement and shear strength characteristics of composite ground. In large-scale direct she4ar tests, area replacement ratios of 20%, 30%, 46% were applied to study their effects on shear strength characteristics of composite ground.

  • PDF

Behavior of Geotextile Tube for Erosion Control (침식방지를 위한 토목섬유튜브의 거동 분석)

  • Chang, Yong-Chai;Son, Ka-Young;Lee, Seung-Eun;Kim, Sang-Jin;Kim, Suk-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.5-12
    • /
    • 2012
  • Geotextile tube method is the latest application process to construct a variety of civil structures such as river and coastal structures by using geotextile which is a high polymer synthetic fiber. In this paper, laboratory tests and field tests were conducted in order to identify the behavior, stability and application possibility of geotextile tube which prevents the erosion of coastal sand. As a result of large-scale direct shear test, which is one of laboratory tests, the increase in friction angle was shown as the relative density increased, and friction angle of sand/geotextile was larger than that of sand/sand. As a result of field test, the behavior and stability during construction and after construction were identified through measurement, and the effect of preventing erosion was confirmed.

Disturbance Effects of Field $V_S$ Probe (현장 전단파 속도 프로브의 교란효과)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Lee, Woo-Jin;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.605-612
    • /
    • 2008
  • The shear wave velocity ($V_s$) has been commonly used to evaluate the dynamic properties of soil. The field $V_s$ probe (FVP) was already developed to assess the shear stiffness of a soft clay. The objective of this study is to investigate the disturbance effects of the FVP due to the penetration. The laboratory tests are conducted in a large-scale consolidometer (calibration chamber). The reconstituted clay is mixed at the water content of 110% using a slurry mixer. The FVP and down-hole test are carried out every 1cm interval to compare the data. In addition, two square rods with transducers are also implemented to get the reference value. The shear waves evaluated by the FVP, dow-hole tests, and reference rods are closely matched. This study suggests that the disturbance effect of the FVP due to the penetration into the soft clay soils is small enough and the $V_s$ evaluated by the FVP reflects well the in-situ characteristics. Furthermore, the combination of the FVP and down-hole test shows the possibility of hybrid equipment.

  • PDF