• Title/Summary/Keyword: Large language model

Search Result 323, Processing Time 0.026 seconds

A Study on Applying a Consistent UML Model to Naval Combat System Software Using Model Verification System

  • Jung, Seung-Mo;Lee, Woo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.109-116
    • /
    • 2022
  • Recently, a model-based development method centered on highly readable and standardized UML (Unified Modeling Language) models has been applied to solve unclear communications in large-scale software development. However, it is difficult to apply consistent UML models depending on software developers' proficiency, understanding of models and modeling tools. In this paper, we propose a method for developing a Model Verification System to apply an consistent UML model to software development. Then, the developed Model Verification System is partially applied to the Naval Combat System Software development to prove its function. The Model Verification System provides automatic verification of models created by developers according to domain characteristics. If the Model Verification System proposed in this paper is used, It has the advantage of being able to apply the consistent UML model more easily to Naval Combat System Software Development.

A Meta-Analysis on the Effects of Activities Using Picture Books on Language Development in Young Children (그림책을 활용한 활동이 유아의 언어발달에 미치는 효과에 대한 메타분석)

  • Shim, Gyeong-Hwa;Lim, Yangmi;Park, Eun-Young
    • Korean Journal of Childcare and Education
    • /
    • v.15 no.4
    • /
    • pp.115-134
    • /
    • 2019
  • Objective: This study was aimed to analyze the effects of activities using picture books for young children's language development and to identify factors that caused differences in these effects by applying meta-analysis. Methods: We conducted a homogeneity test of effect sizes on 21 Korean studies published in academic journals from 1990 to February 2018 and calculated the effect size by applying a random effect model. Additionally, we conducted a meta-ANOVA to investigate whether the effect sizes differed by types of language development, picture book activities, and environmental variables-such as place, time, and agent. Results: The results indicated that the effect sizes of the 21 studies were heterogeneous and the total effect size was 0.90, which was significantly large according to Cohen's standard. The effect sizes also varied by types of language development, picture book activities, and environmental variables. Conclusion/Implications: To increase the effects of activities using picture books for young children's language development, this study suggested the importance of picture book activities to be integrated with other play areas, teaching methods, and other print materials for the development of literacy abilities, and the link between home and early childhood education institutions.

Improvement and Evaluation of the Korean Large Vocabulary Continuous Speech Recognition Platform (ECHOS) (한국어 음성인식 플랫폼(ECHOS)의 개선 및 평가)

  • Kwon, Suk-Bong;Yun, Sung-Rack;Jang, Gyu-Cheol;Kim, Yong-Rae;Kim, Bong-Wan;Kim, Hoi-Rin;Yoo, Chang-Dong;Lee, Yong-Ju;Kwon, Oh-Wook
    • MALSORI
    • /
    • no.59
    • /
    • pp.53-68
    • /
    • 2006
  • We report the evaluation results of the Korean speech recognition platform called ECHOS. The platform has an object-oriented and reusable architecture so that researchers can easily evaluate their own algorithms. The platform has all intrinsic modules to build a large vocabulary speech recognizer: Noise reduction, end-point detection, feature extraction, hidden Markov model (HMM)-based acoustic modeling, cross-word modeling, n-gram language modeling, n-best search, word graph generation, and Korean-specific language processing. The platform supports both lexical search trees and finite-state networks. It performs word-dependent n-best search with bigram in the forward search stage, and rescores the lattice with trigram in the backward stage. In an 8000-word continuous speech recognition task, the platform with a lexical tree increases 40% of word errors but decreases 50% of recognition time compared to the HTK platform with flat lexicon. ECHOS reduces 40% of recognition errors through incorporation of cross-word modeling. With the number of Gaussian mixtures increasing to 16, it yields word accuracy comparable to the previous lexical tree-based platform, Julius.

  • PDF

Empowering Emotion Classification Performance Through Reasoning Dataset From Large-scale Language Model (초거대 언어 모델로부터의 추론 데이터셋을 활용한 감정 분류 성능 향상)

  • NunSol Park;MinHo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.59-61
    • /
    • 2023
  • 본 논문에서는 감정 분류 성능 향상을 위한 초거대 언어모델로부터의 추론 데이터셋 활용 방안을 제안한다. 이 방안은 Google Research의 'Chain of Thought'에서 영감을 받아 이를 적용하였으며, 추론 데이터는 ChatGPT와 같은 초거대 언어 모델로 생성하였다. 본 논문의 목표는 머신러닝 모델이 추론 데이터를 이해하고 적용하는 능력을 활용하여, 감정 분류 작업의 성능을 향상시키는 것이다. 초거대 언어 모델(ChatGPT)로부터 추출한 추론 데이터셋을 활용하여 감정 분류 모델을 훈련하였으며, 이 모델은 감정 분류 작업에서 향상된 성능을 보였다. 이를 통해 추론 데이터셋이 감정 분류에 있어서 큰 가치를 가질 수 있음을 증명하였다. 또한, 이 연구는 기존에 감정 분류 작업에 사용되던 데이터셋만을 활용한 모델과 비교하였을 때, 추론 데이터를 활용한 모델이 더 높은 성능을 보였음을 증명한다. 이 연구를 통해, 적은 비용으로 초거대 언어모델로부터 생성된 추론 데이터셋의 활용 가능성을 보여주고, 감정 분류 작업 성능을 향상시키는 새로운 방법을 제시한다. 제시한 방안은 감정 분류뿐만 아니라 다른 자연어처리 분야에서도 활용될 수 있으며, 더욱 정교한 자연어 이해와 처리가 가능함을 시사한다.

  • PDF

Korean Food Review Analysis Using Large Language Models: Sentiment Analysis and Multi-Labeling for Food Safety Hazard Detection (대형 언어 모델을 활용한 한국어 식품 리뷰 분석: 감성분석과 다중 라벨링을 통한 식품안전 위해 탐지 연구)

  • Eun-Seon Choi;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.75-88
    • /
    • 2024
  • Recently, there have been cases reported in the news of individuals experiencing symptoms of food poisoning after consuming raw beef purchased from online platforms, or reviews claiming that cherry tomatoes tasted bitter. This suggests the potential for analyzing food reviews on online platforms to detect food hazards, enabling government agencies, food manufacturers, and distributors to manage consumer food safety risks. This study proposes a classification model that uses sentiment analysis and large language models to analyze food reviews and detect negative ones, multi-labeling key food safety hazards (food poisoning, spoilage, chemical odors, foreign objects). The sentiment analysis model effectively minimized the misclassification of negative reviews with a low False Positive rate using a 'funnel' model. The multi-labeling model for food safety hazards showed high performance with both recall and accuracy over 96% when using GPT-4 Turbo compared to GPT-3.5. Government agencies, food manufacturers, and distributors can use the proposed model to monitor consumer reviews in real-time, detect potential food safety issues early, and manage risks. Such a system can protect corporate brand reputation, enhance consumer protection, and ultimately improve consumer health and safety.

Cross-Lingual Style-Based Title Generation Using Multiple Adapters (다중 어댑터를 이용한 교차 언어 및 스타일 기반의 제목 생성)

  • Yo-Han Park;Yong-Seok Choi;Kong Joo Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.341-354
    • /
    • 2023
  • The title of a document is the brief summarization of the document. Readers can easily understand a document if we provide them with its title in their preferred styles and the languages. In this research, we propose a cross-lingual and style-based title generation model using multiple adapters. To train the model, we need a parallel corpus in several languages with different styles. It is quite difficult to construct this kind of parallel corpus; however, a monolingual title generation corpus of the same style can be built easily. Therefore, we apply a zero-shot strategy to generate a title in a different language and with a different style for an input document. A baseline model is Transformer consisting of an encoder and a decoder, pre-trained by several languages. The model is then equipped with multiple adapters for translation, languages, and styles. After the model learns a translation task from parallel corpus, it learns a title generation task from monolingual title generation corpus. When training the model with a task, we only activate an adapter that corresponds to the task. When generating a cross-lingual and style-based title, we only activate adapters that correspond to a target language and a target style. An experimental result shows that our proposed model is only as good as a pipeline model that first translates into a target language and then generates a title. There have been significant changes in natural language generation due to the emergence of large-scale language models. However, research to improve the performance of natural language generation using limited resources and limited data needs to continue. In this regard, this study seeks to explore the significance of such research.

Development of Integrated Design System for Space Frame Structures (스페이스프레임 구조물의 통합설계시스템 개발)

  • Lee, Ju-Young;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.59-66
    • /
    • 2001
  • This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

Class Language Model based on Word Embedding and POS Tagging (워드 임베딩과 품사 태깅을 이용한 클래스 언어모델 연구)

  • Chung, Euisok;Park, Jeon-Gue
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.7
    • /
    • pp.315-319
    • /
    • 2016
  • Recurrent neural network based language models (RNN LM) have shown improved results in language model researches. The RNN LMs are limited to post processing sessions, such as the N-best rescoring step of the wFST based speech recognition. However, it has considerable vocabulary problems that require large computing powers for the LM training. In this paper, we try to find the 1st pass N-gram model using word embedding, which is the simplified deep neural network. The class based language model (LM) can be a way to approach to this issue. We have built class based vocabulary through word embedding, by combining the class LM with word N-gram LM to evaluate the performance of LMs. In addition, we propose that part-of-speech (POS) tagging based LM shows an improvement of perplexity in all types of the LM tests.

Research on the Development Direction of Language Model-based Generative Artificial Intelligence through Patent Trend Analysis (특허 동향 분석을 통한 언어 모델 기반 생성형 인공지능 발전 방향 연구)

  • Daehee Kim;Jonghyun Lee;Beom-seok Kim;Jinhong Yang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.279-291
    • /
    • 2023
  • In recent years, language model-based generative AI technologies have made remarkable progress. In particular, it has attracted a lot of attention due to its increasing potential in various fields such as summarization and code writing. As a reflection of this interest, the number of patent applications related to generative AI has been increasing rapidly. In order to understand these trends and develop strategies accordingly, future forecasting is key. Predictions can be used to better understand the future trends in the field of technology and develop more effective strategies. In this paper, we analyzed patents filed to date to identify the direction of development of language model-based generative AI. In particular, we took an in-depth look at research and invention activities in each country, focusing on application trends by year and detailed technology. Through this analysis, we tried to understand the detailed technologies contained in the core patents and predict the future development trends of generative AI.

Development of university liberal arts curriculum for understanding and utilizing generative AI (생성형 AI 이해 및 활용을 위한 대학 교양교과목 교육과정 개발)

  • Jihyun Park;Jongjin Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.645-650
    • /
    • 2024
  • This paper jointly designed and developed a liberal arts curriculum at two local universities for college liberal arts education using generative AI centered on ChatGPT. The developed curriculum takes into account the conceptual components for designing classes for integrated use of university ChatGPT presented in existing research, understands the language model and artificial intelligence that form the basis of ChatGPT, and applies generative AI including ChatGPT to various domains. It was developed with useful content. The developed curriculum introduces the concept and changing aspects of artificial intelligence and the natural language processing language model that is the basis of ChatGPT for students in various majors, and generates ChatGPT, a generative AI and large language model (LLM), and various open sources. The purpose was to implement my own AI service using the model and present an example of mutual collaboration between universities in Joint Education Curriculum Operation.