Journal of the Korea Society of Computer and Information
/
v.27
no.5
/
pp.109-116
/
2022
Recently, a model-based development method centered on highly readable and standardized UML (Unified Modeling Language) models has been applied to solve unclear communications in large-scale software development. However, it is difficult to apply consistent UML models depending on software developers' proficiency, understanding of models and modeling tools. In this paper, we propose a method for developing a Model Verification System to apply an consistent UML model to software development. Then, the developed Model Verification System is partially applied to the Naval Combat System Software development to prove its function. The Model Verification System provides automatic verification of models created by developers according to domain characteristics. If the Model Verification System proposed in this paper is used, It has the advantage of being able to apply the consistent UML model more easily to Naval Combat System Software Development.
Objective: This study was aimed to analyze the effects of activities using picture books for young children's language development and to identify factors that caused differences in these effects by applying meta-analysis. Methods: We conducted a homogeneity test of effect sizes on 21 Korean studies published in academic journals from 1990 to February 2018 and calculated the effect size by applying a random effect model. Additionally, we conducted a meta-ANOVA to investigate whether the effect sizes differed by types of language development, picture book activities, and environmental variables-such as place, time, and agent. Results: The results indicated that the effect sizes of the 21 studies were heterogeneous and the total effect size was 0.90, which was significantly large according to Cohen's standard. The effect sizes also varied by types of language development, picture book activities, and environmental variables. Conclusion/Implications: To increase the effects of activities using picture books for young children's language development, this study suggested the importance of picture book activities to be integrated with other play areas, teaching methods, and other print materials for the development of literacy abilities, and the link between home and early childhood education institutions.
We report the evaluation results of the Korean speech recognition platform called ECHOS. The platform has an object-oriented and reusable architecture so that researchers can easily evaluate their own algorithms. The platform has all intrinsic modules to build a large vocabulary speech recognizer: Noise reduction, end-point detection, feature extraction, hidden Markov model (HMM)-based acoustic modeling, cross-word modeling, n-gram language modeling, n-best search, word graph generation, and Korean-specific language processing. The platform supports both lexical search trees and finite-state networks. It performs word-dependent n-best search with bigram in the forward search stage, and rescores the lattice with trigram in the backward stage. In an 8000-word continuous speech recognition task, the platform with a lexical tree increases 40% of word errors but decreases 50% of recognition time compared to the HTK platform with flat lexicon. ECHOS reduces 40% of recognition errors through incorporation of cross-word modeling. With the number of Gaussian mixtures increasing to 16, it yields word accuracy comparable to the previous lexical tree-based platform, Julius.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.59-61
/
2023
본 논문에서는 감정 분류 성능 향상을 위한 초거대 언어모델로부터의 추론 데이터셋 활용 방안을 제안한다. 이 방안은 Google Research의 'Chain of Thought'에서 영감을 받아 이를 적용하였으며, 추론 데이터는 ChatGPT와 같은 초거대 언어 모델로 생성하였다. 본 논문의 목표는 머신러닝 모델이 추론 데이터를 이해하고 적용하는 능력을 활용하여, 감정 분류 작업의 성능을 향상시키는 것이다. 초거대 언어 모델(ChatGPT)로부터 추출한 추론 데이터셋을 활용하여 감정 분류 모델을 훈련하였으며, 이 모델은 감정 분류 작업에서 향상된 성능을 보였다. 이를 통해 추론 데이터셋이 감정 분류에 있어서 큰 가치를 가질 수 있음을 증명하였다. 또한, 이 연구는 기존에 감정 분류 작업에 사용되던 데이터셋만을 활용한 모델과 비교하였을 때, 추론 데이터를 활용한 모델이 더 높은 성능을 보였음을 증명한다. 이 연구를 통해, 적은 비용으로 초거대 언어모델로부터 생성된 추론 데이터셋의 활용 가능성을 보여주고, 감정 분류 작업 성능을 향상시키는 새로운 방법을 제시한다. 제시한 방안은 감정 분류뿐만 아니라 다른 자연어처리 분야에서도 활용될 수 있으며, 더욱 정교한 자연어 이해와 처리가 가능함을 시사한다.
Recently, there have been cases reported in the news of individuals experiencing symptoms of food poisoning after consuming raw beef purchased from online platforms, or reviews claiming that cherry tomatoes tasted bitter. This suggests the potential for analyzing food reviews on online platforms to detect food hazards, enabling government agencies, food manufacturers, and distributors to manage consumer food safety risks. This study proposes a classification model that uses sentiment analysis and large language models to analyze food reviews and detect negative ones, multi-labeling key food safety hazards (food poisoning, spoilage, chemical odors, foreign objects). The sentiment analysis model effectively minimized the misclassification of negative reviews with a low False Positive rate using a 'funnel' model. The multi-labeling model for food safety hazards showed high performance with both recall and accuracy over 96% when using GPT-4 Turbo compared to GPT-3.5. Government agencies, food manufacturers, and distributors can use the proposed model to monitor consumer reviews in real-time, detect potential food safety issues early, and manage risks. Such a system can protect corporate brand reputation, enhance consumer protection, and ultimately improve consumer health and safety.
KIPS Transactions on Software and Data Engineering
/
v.12
no.8
/
pp.341-354
/
2023
The title of a document is the brief summarization of the document. Readers can easily understand a document if we provide them with its title in their preferred styles and the languages. In this research, we propose a cross-lingual and style-based title generation model using multiple adapters. To train the model, we need a parallel corpus in several languages with different styles. It is quite difficult to construct this kind of parallel corpus; however, a monolingual title generation corpus of the same style can be built easily. Therefore, we apply a zero-shot strategy to generate a title in a different language and with a different style for an input document. A baseline model is Transformer consisting of an encoder and a decoder, pre-trained by several languages. The model is then equipped with multiple adapters for translation, languages, and styles. After the model learns a translation task from parallel corpus, it learns a title generation task from monolingual title generation corpus. When training the model with a task, we only activate an adapter that corresponds to the task. When generating a cross-lingual and style-based title, we only activate adapters that correspond to a target language and a target style. An experimental result shows that our proposed model is only as good as a pipeline model that first translates into a target language and then generates a title. There have been significant changes in natural language generation due to the emergence of large-scale language models. However, research to improve the performance of natural language generation using limited resources and limited data needs to continue. In this regard, this study seeks to explore the significance of such research.
Journal of Korean Association for Spatial Structures
/
v.1
no.2
s.2
/
pp.59-66
/
2001
This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.
Recurrent neural network based language models (RNN LM) have shown improved results in language model researches. The RNN LMs are limited to post processing sessions, such as the N-best rescoring step of the wFST based speech recognition. However, it has considerable vocabulary problems that require large computing powers for the LM training. In this paper, we try to find the 1st pass N-gram model using word embedding, which is the simplified deep neural network. The class based language model (LM) can be a way to approach to this issue. We have built class based vocabulary through word embedding, by combining the class LM with word N-gram LM to evaluate the performance of LMs. In addition, we propose that part-of-speech (POS) tagging based LM shows an improvement of perplexity in all types of the LM tests.
Daehee Kim;Jonghyun Lee;Beom-seok Kim;Jinhong Yang
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.16
no.5
/
pp.279-291
/
2023
In recent years, language model-based generative AI technologies have made remarkable progress. In particular, it has attracted a lot of attention due to its increasing potential in various fields such as summarization and code writing. As a reflection of this interest, the number of patent applications related to generative AI has been increasing rapidly. In order to understand these trends and develop strategies accordingly, future forecasting is key. Predictions can be used to better understand the future trends in the field of technology and develop more effective strategies. In this paper, we analyzed patents filed to date to identify the direction of development of language model-based generative AI. In particular, we took an in-depth look at research and invention activities in each country, focusing on application trends by year and detailed technology. Through this analysis, we tried to understand the detailed technologies contained in the core patents and predict the future development trends of generative AI.
The Journal of the Convergence on Culture Technology
/
v.10
no.5
/
pp.645-650
/
2024
This paper jointly designed and developed a liberal arts curriculum at two local universities for college liberal arts education using generative AI centered on ChatGPT. The developed curriculum takes into account the conceptual components for designing classes for integrated use of university ChatGPT presented in existing research, understands the language model and artificial intelligence that form the basis of ChatGPT, and applies generative AI including ChatGPT to various domains. It was developed with useful content. The developed curriculum introduces the concept and changing aspects of artificial intelligence and the natural language processing language model that is the basis of ChatGPT for students in various majors, and generates ChatGPT, a generative AI and large language model (LLM), and various open sources. The purpose was to implement my own AI service using the model and present an example of mutual collaboration between universities in Joint Education Curriculum Operation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.