• Title/Summary/Keyword: Large ingot

Search Result 65, Processing Time 0.025 seconds

Study on the Fabrication of a Large Steel Ingot with the Ultra Clean and Low Hot Top Ratio (저압탕 고청정 대형 잉고트 제조 연구)

  • Oh, S.H.;Lee, D.H.;Kim, N.S.;NamKung, J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.91-93
    • /
    • 2009
  • A large steel ingot needs to be larger and larger in size and an ultra high clean, no defect in quality with a low hot top ratio for the resent heavy industry. The demands are very difficult to achieve simultaneously because of their contradictive effect to each other in results. In this study, 30ton steel ingot was cast in a foundry with an optimized design parameter of cast mold and cast process conditions for the low hot top ratio, 12%. The cast ingot was analyzed in macro defect, segregations, and cleanness. No macro defect was founded in central surface of the ingot. The degree of segregation and cleanness are in the controlled range with a sound quality.

  • PDF

A Parametric Study for the Upset Forging of Large Ingot (대형 Ingot의 Upset 단조기술에 관한 연구)

  • 박승희;유성만;신상엽
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.101-107
    • /
    • 1999
  • The upset forging stage is the initial work in the forging process. It is used to remove the segregation and cavities of the ingot. Specially in handling large sized ingot, an improper upset forging can cause serious surface tearing. However, there is no detail reference for stable upset forging work. To resolve this difficulty, we studied several factors such as upset forging time, temperature varation of ingot, damage, load and stain rate etc., by using the rigid-plastic finite element approach available in the DEFORM code. Numerical simulation results indicated that: the load value of upset forging works shows severe decreasing trend at a certain point, same as strain rate. Also defects were found to be concentrated around the upper and lower portions of the ingot. With these results, we can estimate a guideline for stable upset forging work.

  • PDF

Nonmetallic Inclusion in the Large Steel Ingot Casting Process (대형강괴 주조공정 중 비금속개재물 저감연구)

  • NamKung, J.;Kim, Y.C.;Kim, M.C.;Oho, S.H.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.52-56
    • /
    • 2008
  • Inclusions in forged large steel ingots of plan carbon steel and tool steel are investigated using optical microscop observation and WDX analysis. The large nonmetallic inclusions which is over $30\sim300{\mu}m$ in their diameter were observed in the samples that has been no good on a nondestructive test. The most of the inclusions were consist of some kind of oxides, ${Al_2}{O_3}$, $SiO_2$, CaO, MgO in forms of particles and glassy with an iron particles. The experimental large steel ingot was cast with a pouring temperature which is about ten centigrade higher than the field standard. The inclusions were observed in the test ingot are the smaller than that was in a usual forged steel ingot and is spherical shape with a glassy agglomerated ${Al_2}{O_3}-SiO_2-CaO-MgO$ particle. The pouring temperature is affected on removing the nonmetallic inclusions during the solidification by a floating mechanism.

  • PDF

A Study on the Creative Design of Pulling Module for Silicon Ingot and an Apparatus of Manufacturing Silicon Single Crystal Ingot by using TRIZ(6SC) (TRIZ(6SC)를 활용한 잉곳 인상모듈 및 실리콘 단결정 잉곳 제조장치의 창의적 설계)

  • Hong, Sung Do;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.39-43
    • /
    • 2012
  • This paper presents a study on the design of a pulling module for silicon ingot and an apparatus of manufacturing silicon single crystal ingot using the same method. The pulling module is conceptually designed by using TRIZ. Czochralski method(CZ) is representative way to manufacture single crystal ingot for wafers. The seed can be broken by high tension which is caused by large weight of a silicon ingot. The solution of this problem has been derived using 6SC(6 steps creativity)TRIZ. The pulling module is actuated by DC motor and rollers. High tension in the seed is removed by the rotate-elevate motion of rollers in the pulling module. A rubber belt is included in the rotate-elevate mechanism for increasing friction between rollers and silicon ingot.

The Study of void Closing Behavior in Upset Forging of Large Ingot (대형 잉곳의 업셋 단조에서의 기공 압착 거동에 관한 연구)

  • Lee K. J.;Bae W. B.;Cho J. R.;Kim D. K.;Kim J. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.406-409
    • /
    • 2005
  • In the forging operation of large ingot two break-down process are upsetting and cogging. The first purpose of upsetting is to ensure sufficient forging ratio for subsequent cogging operations and consolidate the voids along the centerline. The second purpose is related to improve the physical properties for a final product. Voids which are generated during the casting process can be one of the decisive defects of materials. So it is necessary to know the standard of Judgment for void-closure in upsetting operation. In practical conditions, FEM analysis(DEFORM 2D 8.1) was carried out to decide how much effective strain has influence on void-closure. It is finally suggested that the function consists of the effective strain of analysis data and the area rate of void.

  • PDF

Mold Design for Large STS Ingot (대형 STS 잉곳 주조용 몰드 설계 기술)

  • Oh, S.H.;NamKung, J.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.43-45
    • /
    • 2008
  • According to industrial development, Ingots are more large and various. In particular large STS ingot. The probability of shrinkage cavity occurrence is higher than carbon steel and alloy steel. To manufacture ultra clean steel the technical development is nearly necessary for example controlling inclusions and total [H]. In this study, after measured the mold temperature and adjusted thermo conductivity of STS steel and compared existing mold to new one with CAE. As a result, the new mold more reduced than existing mold for the probability of shrinkage cavity occurrence.

  • PDF

A Study on the Reduction of Segregation in Large 12%Cr Steel Ingot (12%Cr 대형강괴(大型鋼塊)의 편석경감(偏析輕減)에 관(關)한 연구(硏究))

  • Eun, Ok-Ki;Chang, Yun-Souk
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.520-527
    • /
    • 1990
  • In order to reduce segregation in 12%Cr steel ingots of 60-100tons, numerical analysis by computer was applied to simulate solidification profiles and the profiles of liguid-solid coexisting zone in accordance with the ratios of H(Height) /D(diameter) of 100-ton ingot. The result is that the ratio of L(vertical length) /D(diameter) of liquid-solid coexisting zone was reduced in proportion to the decrease of H/D ratio. With the reduced H/D ratio(0.92) of ingot, the segregation in 60-ton ingot of 12% Cr steel can be much reduced and recovery was also improved by reducing ingot weight.

  • PDF

Study on Internal Void Closure in Slab ingot during Hot Plate Forging (열간 판재단조시 강괴 내부의 기공폐쇄에 관한 연구)

  • 조종래;김동권;김영득;이부윤
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.18-26
    • /
    • 1996
  • In order to investigate the effect of pre-cooling of ingot on void closure in hot plate forging the internal strain and stress distributions are examined quantitatively by using ABAQUS. Simula-tions are carried out on a large slab ingot having the same temperature and the temperature gradient induced by air-cooling. It is shown that pre-cooling produces little effect on the strain behavior but remarkable effect on the hydrostatic stress at the central zone of ingot. The main factors for crushing micro-voids are the effective strain and the time integral of hydrostatic stress in the region surrounding the voids. Based on regression analysis it was found that the distortion of void can be expressed as a polynomial function of the two factors.

  • PDF

Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot (중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구)

  • Lee, S.U.;Lee, Y.S.;Lee, M.W.;Lee, D.H.;Kim, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.

A Study of Optimum Growth Rate on Large Scale Ingot CCz (Continuous Czochralski) Growth Process for Increasing a Productivity (생산성 증대를 위한 대구경 잉곳 연속 성장 초크랄스키 공정 최적 속도 연구)

  • Lee, Yu-Ri;Roh, Ji-Won;Jung, Jae Hak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.775-780
    • /
    • 2016
  • Recently, photovoltaic industry needs a new design of Czochralski (Cz) process for higher productivity with reasonable energy consumption as well as solar cell's efficiency. If the process uses the large size reactor for increasing productivity, it is possible to produce a 12-inch, rather than the 8-inch. Also the continuous czochralski process method can be maximized to increase productivity. In this study, it was designed to improve the yield value of ingot with optimal condition which reduce consumption of electrical power. It has increased the productivity of the 12-inch ingot process condition by using CFD simulation. I have found optimal growth rate, by comparing each growth rate the interface shape, Temperature gradient, power consumption. As a result, the optimal process parameters of the growth furnace has been derived to improve for the productivity and to reduce energy. This study will contribute to the improvement of the productivity in the solar cell industry.