• 제목/요약/키워드: Large eddy

검색결과 665건 처리시간 0.032초

운전부하에 따른 3차원 소형축류홴 날개표면에 작용하는 정압과 항력에 대한 대규모와 모사 (Large Eddy Simulation on the Drag and Static Pressure Acting on the Blade Surface of Three-Dimensional Small-Size Axial Fan with Different Operating Loads)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.57-63
    • /
    • 2017
  • The large-eddy simulation(LES) was carried out to evaluate the drag and static pressure acting on the blade surface of a small-size axial fan(SSAF) under the condition of unsteady-state, incompressible fluid and three-dimensional coordination. The axial component of drag coefficient increases with the increase of operating load, but the radial components have negligible sizes regardless of operating loads. Otherwise, the static pressures acting on the blade surfaces of SSAF show different distributions around the operating point of D equivalent to the stall. Also, with the increase of operating load, the static pressures acting on the pressure and suction surfaces of blade concentrate at the tips and leading-edges as a whole.

LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (II) - 정적 오차 해석 - (On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulations (II) - Static Error Analysis -)

  • 박노마;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.984-994
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes for large eddy simulation is evaluated by a spectral, static error analysis. To investigate the effect of numerical dissipation on LES solutions, power spectra of discretization errors are evaluated for isotropic turbulence models in both continuous and discrete wavevector spaces. Contrary to the common belief, the aliasing errors from upwind-biased schemes are larger than those from comparable non-dissipative schemes. However, this result is the direct consequence of the definition of the power spectral density of the aliasing error, which poses the limitation of the static error analysis for upwind schemes.

LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (I) - 수치 실험 - (On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulation (I) - Numerical Test -)

  • 박노마;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.973-983
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes is evaluated for large eddy simulation of turbulent flow. Two turbulent flows are considered: turbulent channel flow at Re = 23000 and flow over a circular cylinder at Re = 3900. The effects of numerical dissipation on the finite differencing and aliasing errors and the subgrid-scale stress are investigated. It is shown through the simulations that compact upwind schemes are not suitable for LES, whereas the fourth order-compact centered scheme is a good candidate for LES provided that proper dealiasing of nonlinear terms is performed. The classical issue on the aliasing error and the treatment of nonlinear terms is revisited with compact difference schemes.

LES에 의한 원관 내 난류의 유동 해석 (Large Eddy Simulation of Turbulent Pipe Flow)

  • 고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.437-446
    • /
    • 2003
  • A large eddy simulation (LES) is performed for turbulent pipe flow. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The effects of grid fineness which can be well prediction of turbulent behavior in near wall region is investigated. The subgrid scale turbulent models are applied and validated emphasis is placed on the flow details of turbulent pipe flow The calculated Reynolds number is 360 based on the wall shear velocity and the inlet pipe diameter. The predicted turbulent statistics are evaluated by comparing with the DNS data of turbulent pipe flow Performed by Eggels et al. The agreement of LES with DNS data is shown to be satisfactory. The proper grid fineness of the well prediction of turbulent pipe flow is suggested and the turbulent behavior is analyzed by depict the contour plot of fluctuating velocity components.

요철이 설치된 회전하는 채널 내부의 유동 및 열전달의 큰에디모사 (Large Eddy Simulation of Flow and Heat Transfer in a Rotating Ribbed Channel)

  • 안준;최해천;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.193-198
    • /
    • 2003
  • A gas turbine blade has an internal cooling passage equipped with ribs, which can be modeled as a ribbed channel. We have studied a flow inside a ribbed channel using large eddy simulaton (LES) with a dynamic subgrid-scale model. The simulation results are compared with the experimental ones. The turbulence intensity and local heat transfer near the rib have not been well captured by the conventional Reynolds averaged Navier-Stokes simulation (RANS). However, these variables obtained by the present LES agree well with those from experiments. From the instantaneous velocity and temperature fields, we explain the mechanisms responsible for the local peaks in the heat transfer distribution along the channel wall. We have also investigated the effect of rotation on the flow and heat transfer in the ribbed channel.

  • PDF

Bluff-body 연소기의 비반응 유동에 대한 대 와동 모사 (Large Eddy Simulation of Non-reacting Flow in Bluff-body Combustor)

  • 공민석;황철홍;이창언
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.250-257
    • /
    • 2005
  • Large eddy simulation{LES) methodology used to model a bluff-body stabilized non-reacting flow. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using $k-{\epsilon}$ model as well as experimental data. The results showed that the LES and RANS qualitatively well predicted the experimental results, such as mean axial, radial velocities and turbulent kinetic energy. However, in the quantitative analysis, the LES showed a better prediction performance than RANS. Specially, the LES well described characteristics of the recirculation zones, such as air stagnation point and jet stagnation point. Finally, the unsteady phenomena on the Bluff-body, such as the transition of recirculation region and vorticity, was examined with LES methodology.

  • PDF

MEPDF를 이용한 와류 연소실 내부 예혼합 화염의 대 와동 모사 (Large Eddy Simulation of Turbulent Premixed Flame in a Swirled Combustor Using Multi-environment Probability Density Function approach)

  • 김남수;김용모
    • 한국연소학회지
    • /
    • 제22권3호
    • /
    • pp.29-34
    • /
    • 2017
  • The multi-environment probability density function model has been applied to simulate a turbulent premixed flame in a swirl combustor. To realistically account for the unsteady flow motion inside the combustor, the formulations are derived for the large eddy simulation. The Flamelet generated manifolds is utilized to simplify a multi-dimensional composition space with reasonable accuracy. The sub grid scale mixing is modeled by the interaction by exchange with the mean mixing model. To validate the present approach, the simulation results are compared with experimental data in terms of mean velocity, temperature, and species mass fractions.

모델 가스터빈 연소기에서 등온 선회유동의 대 와동 모사 (Large Eddy Simulation of an Isothermal Swirling Flow in a Model Gas Turbine Combustor)

  • 황철홍;이창언
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.462-468
    • /
    • 2004
  • Large eddy simulation(LES) methodology used to model isothermal non-swirling and swirling flows in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code and characterize swirling flow, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using k -$\epsilon$ model as well as experimental data. The results showed that the LES and RANS well predicted the mean velocity field of a non-swirling flow. Specially, the LES showed a very excellent prediction performance for the corner recirculation zone. In swirling flow, comparing with the results obtained by RANS, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone. Finally, unsteady phenomena of turbulent flow was examined with LES methodology.

  • PDF

사각 또는 반원 형상의 요철이 설치된 채널 내부의 유동 및 열전달의 큰에디모사 (Large Eddy Simulation of Flow and Heat Transfer in a Channel Roughened by Square or Semicircle Ribs)

  • 안준;최해천;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1436-1441
    • /
    • 2004
  • The internal cooling passage of a gas turbine blade can be modeled as a ribbed channel. Most studies have considered square ribs. However, the ribs can be rounded due to improper manufacturing or wear during the operation. Hence, we have studied two different rib geometries in this study, i.e. square and semicircle ribs. We have performed large eddy simulations (LES) and experiments to validate the results from the simulations. LES predicts the detailed flow and thermal features, which have not been captured by simulations using turbulence models. By investigating the instantaneous flow and thermal fields, we propose the mechanisms for the local heat transfer distribution between ribs. For both the geometries, heat transfer is enhanced by the entrainment of the cold fluid by the vortical motions and impingement of the entrained cold fluid on the ribs.

  • PDF

평행한 두 사각유로를 연결하는 협소유로내의 난류유동 특성에 관한 대형 와 수치 모사 (Numerical Investigation on Turbulent Flow Characteristics in the Gap connecting with Two parallel Channels using Large Eddy Simulation)

  • 홍성호;서정식;신종근;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.55-60
    • /
    • 2008
  • Turbulent flow characteristics on the gap of two parallel channels are investigated using LES(large eddy simulation) approach. Two parallel channels have the same cross-section area and are connected by the narrow channel named the gap. Turbulent flow near the gap makes the flow pulsation along the streamwise direction of two channels. The flow condition is the Reynolds number of $2.5{\times}10^{-5}$. We compared the predicted results with the previous experimental results and presented the axial mean velocity, turbulent intensities, Reynolds shear stresses and turbulent kinetic energy.

  • PDF