• Title/Summary/Keyword: Large dynamic range

Search Result 286, Processing Time 0.021 seconds

Spectral Element Method for the Dynamic Behaviors of Plate (스펙트럴요소법을 이용한 평판의 동적거동해석)

  • 이상희;이준근;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.328-334
    • /
    • 1996
  • Finite Element Method(FEM) is the most popularly used method in analyzing the dynamic behaviors of structures. But unless the number of finite elements is large enough, the results from FEM are somewhat different from exact analytical solutions, especially at high frequency range. On the other hand, as the Spectral Element Method(SEM) deals directly with the governing equations of structures, the results from this method cannot but be exact regardless of any frequency range. However, despite two dimensional structures are more general, the SEM has been applied only to the analysis of one dimensional structures so far. In this paper, therefore, new methodologies are introduced to analyze the two dimensional plate using SEM. The results from this new method are compared with the exact analytical solutions by letting the two dimensional plate be one dimensional one and showed the dynamic responses of two dimensional plate by including various waves propagated into x-direction.

  • PDF

A Study on the Dynamic Behaviors of Plate Structure Using Spectral Element Method (스펙트럴소법을 이용한 평판의 동적거동 해석)

  • 이우식;이준근;이상희
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.617-624
    • /
    • 1996
  • Finite Element Method(FEM) is one of the most popularly used method in analyzing the dynamic behaviors of structures. But unless the number of finite elements is large enough, the results from FEM are somewhat different form exact analytical solutions, especially at high frequency range. On the other hand, as the Spectral Element Method(SEM) deals directly with the governing equations of structures, the results from this method cannot but be exact regardless of any frequency range. However, despite two dimensional structures are more general, the SEM has been applied only to the analysis of one dimensional structures so far. In this paper, therefore, new methodologies are introduced to analyze the two dimensional plate structure using SEM. The results from this new method are compared with the exact analytical solutions by letting the two dimensional plate structure be one dimensional and showed the dynamic responses of two dimensional plate by including various waves propagated into x-direction.

  • PDF

Dual Stage Servo Controller for Image Tracking System (듀얼 스테이지 서보 시스템을 이용한 영상 추적장치의 정밀제어)

  • Choi, Young-Joon;Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.86-94
    • /
    • 2007
  • In this paper, a dual stage servo mechanism has been developed for image tracking system to improve control performances such as small rise time, small overshoot, small settling time, small stabilization error etc. A secondary stage, a platform, actuated by a pair of electro-magnets is mounted on a conventional elevation gimbal. In this mechanism, the gimbal provides large range but slow motion and the platform provides small range but fast positioning. A sliding mode control is applied to the platform positioning to attain robust performances and stability in the presence of the disturbance related to dynamic coupling of the gimbal and the platform. Results from experiments illustrate that the suggested dual stage mechanism controlled by the sliding mode control is effective in improving responses and attenuating the disturbance response related with dynamic coupling.

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

Evaluation Technique of Seismic Performance on Agricultural Infrastructure - Based on Dynamic Numerical Analysis - (농업 기반시설의 내진성능 평가기법 - 동적 수치해석 중심으로-)

  • Lee, Dal-Won;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.75-84
    • /
    • 2004
  • The evaluation technique of seismic performance on agricultural infrastructure based on dynamic numerical simulations, which Included a cyclic elasto-plastic and a viscoelastic-viscoplastic constitutive model to actual multi-layered ground conditions during large earthquake were performed by a liquefaction analysis in the present study. From the liquefaction analysis, it was verified that the models can give a good description of the damping characteristics and liquefaction phenomena of ground accurately during large event which induces plastic deformation in large strain range.

Dynamic Analysis of the Structures under Dynamic Distributed Loads Using Spectral Element Method (스펙트럴요소법을 이용한 동적분포하중을 받는 구조물의 동적해석)

  • Lee, U-Sik;Lee, Jun-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1773-1783
    • /
    • 1996
  • Finite element method(FEM) is one of the most popularly used method analyzing the dynamic behaviors of structures. But unless number of finite elements is large enough, the results from FEM some what different from exact analytical solutions, especially at high frequency range. On the other hand, as the spectral analysis method(SAM) deals directly with the governing equations of a structure, the results from this melthod cannot but be exact regardless of any frequency range. However, the SAM can be applied only to the case where a structure is subjected to the concentrated loads, despite a structure could be unddergone distributed loads more generally. In this paper, therefore, new spectral analysis algorithm is introduced through the spectral element method(SEM), so that it can be applied to anlystructures whether they are subjected to the concentrated loads or to the distributed loads. The results from this new SEM are compared with both the results from FEM and the exact analytical solutions. As expected, the results from new SEM algorithm are found to be almost identical to the exact analytical solutions while those from FEM are not agreed well with the exact analytical solutions as the mode number increases.

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(I) (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구 (I) -기하학적 형상에 따른 동적 특성-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.113-121
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form. Therefore, the stress analysis of thin shell has been one of the more challenging areas of structural mechanics. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical Shell. For these purpose, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic dynamic response. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows: 1. The dynamic characteristics with a/H, 1) As the a/H increases, the amplitude of displacement increased. 2) The values of displacement Dynamic Magnification Factor (DMF) range from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell range from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point of shell is increased gradually. 4) The values of DMF of hoop-stresses range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell range from 2.3 to 2.6, the values of DMF of stress were larger than that of displacement. 2. The dynamic characteristics with t/R, 1) With the decrease of thickness of shell decreses, the amplitude of the displacement and the period increased. 2) The values of DMF of the displacement were range from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were range from 2.1 to 2.2.

  • PDF

Parameter Optimization of the LC filters Based on Multiple Impact Factors for Cascaded H-bridge Dynamic Voltage Restorers

  • Chen, Guodong;Zhu, Miao;Cai, Xu
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2014
  • The cascaded H-Bridge Dynamic Voltage Restorer (DVR) is used for protecting high voltage and large capacity loads from voltage sags. The LC filter in the DVR is needed to eliminate switching ripples, which also provides an accurate tracking feature in a certain frequency range. Therefore, the parameter optimization of the LC filter is especially important. In this paper, the value range functions for the inductance and capacitance in LC filters are discussed. Then, parameter variations under different conditions of voltage sags and power factors are analyzed. In addition, an optimized design method is also proposed with the consideration of multiple impact factors. A detailed optimization procedure is presented, and its validity is demonstrated by simulation and experimental results. Both results show that the proposed method can improve the LC filter design for a cascaded H-Bridge DVR and enhance the performance of the whole system.

A Study on the Per-Channel CPCM Method by means of the 1-Bit Interpolation (1-Bit Interpolation을 이용한 Per-Channel CPCM부호화방식에 관한 연구)

  • 정해원;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.2
    • /
    • pp.47-54
    • /
    • 1982
  • In this paper, a improved per-channel PCM Coder with 1-bit interpolation is proposed. The coder converts a telephone signal to 15-segments u-law PCM signal of a large dynamic range. The A/D conversion technique of the proposed converter requires a feedback loop around a quantizer operates at high speed, and a accumulater for accumulating the quantized values to provide PCM outputs. To obtain both linear and compressed PCM signals a improved table look-up method is presented. The operations of the proposed converter are certified through the experiments to be good. The experimental circuit comprises TTL logic gates, a resistive D/Z converter and a simple differential amplifier. From the results of the experiments, it is known that the proposed converter has many advantage to be adopted economically for per-channel onverter used in rural area service.

  • PDF

Logic circuit design for high-speed computing of dynamic response in real-time hybrid simulation using FPGA-based system

  • Igarashi, Akira
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1131-1150
    • /
    • 2014
  • One of the issues in extending the range of applicable problems of real-time hybrid simulation is the computation speed of the simulator when large-scale computational models with a large number of DOF are used. In this study, functionality of real-time dynamic simulation of MDOF systems is achieved by creating a logic circuit that performs the step-by-step numerical time integration of the equations of motion of the system. The designed logic circuit can be implemented to an FPGA-based system; FPGA (Field Programmable Gate Array) allows large-scale parallel computing by implementing a number of arithmetic operators within the device. The operator splitting method is used as the numerical time integration scheme. The logic circuit consists of blocks of circuits that perform numerical arithmetic operations that appear in the integration scheme, including addition and multiplication of floating-point numbers, registers to store the intermediate data, and data busses connecting these elements to transmit various information including the floating-point numerical data among them. Case study on several types of linear and nonlinear MDOF system models shows that use of resource sharing in logic synthesis is crucial for effective application of FPGA to real-time dynamic simulation of structural response with time step interval of 1 ms.