• Title/Summary/Keyword: Large displacement

Search Result 1,403, Processing Time 0.029 seconds

Experimental study on lead extrusion damper and its earthquake mitigation effects for large-span reticulated shell

  • Yang, M.F.;Xu, Z.D.;Zhang, X.C.
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.481-496
    • /
    • 2015
  • A Lead Extrusion Damper (LED) is experimentally studied under various frequencies and displacement amplitudes. Experimental results show that the force-displacement hysteresis loops of the LED are close to rectangular and the force-velocity hysteresis loops exhibit nonlinear hysteretic characteristic. Also, the LED can provide consistent energy dissipation without any stiffness degradation. Based on the experimental results, a mathematical model is then proposed to describe the effects of frequency and displacement on property of LED. It can be proved from the comparison between experimental and numerical results that the mathematical model can accurately describe the mechanical behavior of LED. Subsequently, the seismic responses of the Schwedler reticulated shell structure with LEDs are analyzed by ANSYS software, in which three different installation forms of LEDs are considered. It can be concluded that the LED can effectively reduce the displacement and acceleration responses of this type of structures.

Motion of a System with Varying Damping Subject to Harmonic Force - Analytical Analysis (변화하는 감쇠를 갖는 계가 조화력을 받을 때의 운동 - 이론적 해석)

  • Park, O-Cheol;Lee, Gun-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.898-902
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$ respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$ and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. Part of these simulation results are proved analytically.

  • PDF

Motion of a System with Varying Stiffness/Damping Subject to Harmonic Force (변화하는 강성/감쇠를 갖는 계가 조화력을 받을 때의 운동)

  • Lee, Gun-Myung;Park, O-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.81-85
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$, respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$, and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. These results can be applied to development of a moment shatter with low frequencies.

  • PDF

Waviness measurement of workpiece with a Large Surface Area (대면적 공작물의 기하학적 Waviness 측정)

  • Kang D.B.;Son S.M.;Ah J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.115-118
    • /
    • 2005
  • A workpiece with a large surface area is likely to be uneven due to form error and waviness. These geometric disturbances can cause inaccurate micro shapes to be formed when micro features are micro-grooved into the surface and cause the resulting workpiece to fail to function as desired. Thus, real-time measurement and compensation is required to guarantee the form accuracy of micro features while machining a workpiece with a large surface area. In this study, a method is suggested for real-time measurement of geometric error for the micro grooving of a large flat surface using a laser displacement sensor. The measurements are demonstrated for the workpieces with large surface areas and the experimental results show that the waviness and form error are well detected.

  • PDF

Traumatic Displacement of the Globe into the Maxillary Sinus: Case Report (외상성 상악동 안구탈출의 치험례: 증례보고)

  • Lim, Chan Soo;Kang, Dong Hee
    • Archives of Plastic Surgery
    • /
    • v.34 no.4
    • /
    • pp.524-527
    • /
    • 2007
  • Purpose: Globe displacement due to a blowout fracture is a rare clinical phenomenon. The authors present reduction of a globe displacement to the maxillary sinus due to trauma suffered in a fall and the reconstruction of a large defect left in the medial and inferior orbit. Methods: A 39-year-old male patient was unable to open his left eye after being struck on the periorbital area by a metal edge. Laceration was not noted in that area but we were unable to observe the intraorbital globe. A facial computed tomography (CT) scan showed that the globe was displaced through the maxillary sinus. A transconjunctival approach was used to access the infraorbital margin and the globe entrapped in the inferior margin of the orbit was successfully reduced. A large defect in the medial and inferior orbit was reconstructed using a graft from the iliac bone. Results: In 5 months after the operation, no atrophy of the globe was seen. Both sides retained a similar shape. A satisfactory functionality outcome in terms of improved extraocular muscle movement, and a satisfactory aesthetical outcome were achieved. Conclusion: The authors report the reduction of a globe displaced to the maxillary sinus following a fall and the reconstruction of the large defect left in the medial and inferior orbit.

The Impact of the Amount of Displacement of Percutaneous Osteotomy on the Clinical Result in Bunionette (소건막류에서 경피적 절골술의 전위 정도가 임상 결과에 미치는 영향)

  • Bae, Su-Young;Lee, Seung-Joo;Chung, Hyung-Jin
    • Journal of Korean Foot and Ankle Society
    • /
    • v.19 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • Purpose: The purpose of this study was to report impacts of the amount of displacement of percutaneous osteotomy on the clinical and radiologic results in the treatment of bunionette deformities. Materials and Methods: We retrospectively reviewed 36 cases of bunionette deformities treated with percutaneous modified Kramer osteotomies from 2009 to 2013. We measured amounts of displacement on anteroposterior and lateral plain radiographs as well as multiple parameters which represent degrees of the bunionette deformities. We also recorded radiological healing time, clinical healing time, residual symptoms, and the time of returning to daily activity. Results: No meaningful correlation was found between severity of preoperative deformity and amount of displacement of the osteotomy. The amount of displacement on a horizontal plane did not affect the healing time, duration of symptoms, or time of returning to daily activity. However, large sagittal displacement was related to duration of postoperative symptoms. Conclusion: Findings of this study suggest that the displacement in percutaneous osteotomy for bunionette deformity does not affect clinical results and healing time. We believe that we do not need to be excessively cautious about how large the displacement we make during the percutaneous modified Kramer osteotomy for the bunionette deformity.

Applications of Displacement Response Estimation Algorithm Using Mode Decomposition Technique to Existing Bridges (모드분해기법을 이용한 변위응답추정 알고리즘의 실교량 적용)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.257-264
    • /
    • 2010
  • Generally, estimations on the displacement as an important factor in evaluating the safety of large structures could be a barometer assessing whether the condition of the structure is deteriorating. Practically, it is not easy how to measure the displacement response to large structures like suspension bridges. In this study, as a method for estimation displacement response from strain signals, mode decomposition technique is proposed. Total displacement response is estimated by superposing quasistatic displacement response and modal displacement responses in dominant modes with larger contributions after estimating the modal displacement responses. If foiled strain gauges are used to measure strain signals, there would likely to generate electric noise, what's more, the more measuring points there are the more economic burden it could be. In order to solve such problems, fiber optic bragg-grating(FBG) sensors were used, which have multi-point measurements with no effect on electric noises. Therefore, the experiment was performed through dynamic load test of suspension bridge and plate-girder bridge to review the possibility for using mode decomposition technique.

A Basic Study of Displacement Measurement of Magnetic Bearing System Using Hall Effect Sensor (자기베어링 시스템에서의 변위측정을 위한 홀 효과 센서의 기초 연구)

  • Yang, J.H.;Jeong, G.G.;Jeong, H.H.;Son, S.K.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.72-76
    • /
    • 2007
  • Since the magnetic bearing system has unstability inherently it is necessary to measure the displacement for stable operation. Normally the displacement measurement is implemented by using sensors. The sensor for the displacement measurement is selected by precision, installation space, effect of magnetic field and response speed. And the cost of displacement measurement sensor also is considered. At the cost the hall effect sensor has a large advantage comparing with the others. Therefore this study concern about the basis experimental test for the displacement measurement of the magnetic bearing system that uses the hall effect sensor coupled with a tiny permanent magnet. The experimental results confirm the validity and practicability for this displacement measurement sensor.

  • PDF

A Study on the Elastic-Plastic Contact Problem for Large Deformation (대변형 탄소성 접촉문제에 관한 연구)

  • Jeon, Byung-Hee;Kim, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1658-1667
    • /
    • 1993
  • In this research, a numerical algorithm has been developed, which can be applied to the large deformation and large displacement contact problems between two deformable bodies. The contact conditions expressed in terms of the rate of angle change have been proposed considering the change in geometric shape and rate of contact force. A set of linear simultaneous equations is constructed by adding the geometric shape change and contact conditions to the original stiffness matrix. A new method to determine time increment has been proposed based on Euler method, in which the condition to prevent the contact bodies from penetrating and overrunning each other has been taken into consideration. Practical application to contact problem is extrusion in which bodies are sliding along the contact boundary.

Study on the Frame Structure Modeling of the Beam Element Formulated by Absolute Nodal Coordinate Approach

  • Takahashi Yoshitaka;Shimizu Nobuyuki;Suzuki Kohei
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.283-291
    • /
    • 2005
  • Accurate seismic analyses of large deformable moving structures are still unsolved problems in the field of earthquake engineering. In order to analyze these problems, the nonlinear finite element method formulated by the absolute nodal coordinate approach is noticed. Because, this formulation has several advantages over the standard procedures on mass matrix, elastic forces and damping forces in the case of large displacement problems. But, it has not been fully studied to build frame structure models by using beam elements in the absolute nodal coordinate formulation. In this paper, we propose the connecting method of the beam elements formulated by the absolute nodal coordinate. The coordinate transformation matrix of this element is introduced into the frame structure. This beam element has the characteristic that the mass matrix and bending stiffiness matrix are constant even if in the case of large displacement problems, and this characteristic is being kept after the transformation. In order to verify the proposed method, we show the numerical simulation results of frame structures for a vibration problem and a large displacement problem.