• Title/Summary/Keyword: Large Fire

Search Result 927, Processing Time 0.077 seconds

Effect of Non-Equilibrium Condensation on Force Coefficients in Transonic Airfoil Flow (천음속 에어포일 유동에서 비평형 응축이 Force Coefficients 에 미치는 영향)

  • Jeon, Heung Kyun;Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1009-1015
    • /
    • 2014
  • The present study investigated the effects of non-equilibrium condensation with the angle of attack on the coefficients of pressure, lift, and drag in the transonic 2-D flow of NACA0012 by numerical analysis of the total variation diminishing (TVD) scheme. At $T_0=298k$ and ${\alpha}=3^{\circ}$, the lift coefficients for $M_{\infty}=0.78$ and 0.81 decreased monotonically with increasing ${\Phi}_0$. In contrast, for $M_{\infty}$ corresponding to the Mach number of the force break, $C_L$ increased with ${\Phi}_0$. For ${\alpha}=3^{\circ}$ and ${\Phi}_0=0%$, $C_D$ increased markedly as $M_{\infty}$ increased. However, at ${\Phi}_0=60%$ and ${\alpha}=3^{\circ}$, which corresponded to the case of the condensation having a large influence, $C_D$ increased slightly as $M_{\infty}$ increased. The decrease in profile drag by non-equilibrium condensation grew as the angle of attack and stagnation relative humidity increased for the same free stream transonic Mach number. At ${\Phi}_0=0%$, the coefficient of the wave drag increased with the attack angle and free stream Mach number. When ${\Phi}_0$ > 50%, the coefficient of the wave drag decreased as ${\alpha}$ and $M_{\infty}$ increased. Lowering ${\Phi}_0$ and increasing $M_{\infty}$ increased the maximum Mach number.

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.

Cellular Automata Simulation System for Emergency Response to the Dispersion of Accidental Chemical Releases (사고로 인한 유해화학물질 누출확산의 대응을 위한 Cellular Automata기반의 시뮬레이션 시스템)

  • Shin, Insup Paul;Kim, Chang Won;Kwak, Dongho;Yoon, En Sup;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.136-143
    • /
    • 2018
  • Cellular automata have been applied to simulations in many fields such as astrophysics, social phenomena, fire spread, and evacuation. Using cellular automata, this study develops a model for consequence analysis of the dispersion of hazardous chemicals, which is required for risk assessments of and emergency responses for frequent chemical accidents. Unlike in cases of detailed plant safety design, real-time accident responses require fast and iterative calculations to reduce the uncertainty of the distribution of damage within the affected area. EPA ALOHA and KORA of National Institute of Chemical Safety have been popular choices for these analyses. However, this study proposes an initiative to supplement the model and code continuously and is different in its development of free software, specialized for small and medium enterprises. Compared to the full-scale computational fluid dynamics (CFD), which requires large amounts of computation time, the relative accuracy loss is compromised, and the convenience of the general user is improved. Using Python open-source libraries as well as meteorological information linkage, it is made possible to expand and update the functions continuously. Users can easily obtain the results by simply inputting the layout of the plant and the materials used. Accuracy is verified against full-scale CFD simulations, and it will be distributed as open source software, supporting GPU-accelerated computing for fast computation.

Properties of Inorganic Adhesives according to Phosphate Type and Borax Ratio (인산염 종류와 붕사 첨가율에 따른 무기접착재의 특성)

  • Song, Ha-Young;Lim, Jeong-Jun;Khil, Bae-Su;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.289-297
    • /
    • 2019
  • Epoxy resin adhesives are currently used as adhesives in buildings. Epoxy resin adhesives, which are organic materials, generate harmful substances when producing adhesives, and toxic substances are high in the residential space after installation. In addition, a large amount of carbon monoxide generated from organic materials in the case of a building fire leads to personal injury. This study evaluates the feasibility of inorganic adhesives using pure inorganic materials such as magnesia, phosphate, and borax as inorganic adhesives to replace existing organic adhesives. As a result of the experiment on the selection of adequate phosphate and the characteristics of the addition rate of borax used as a retarder, the potassium phosphate monobasic was obtained as a suitable phosphate and the characteristics according to the borax addition rate were compared with the quality standard of KS F 4923 The hardening shrinkage and heat change rate satisfied the quality standards. The tensile strength was satisfactory when the borax addition rate was 4% or more, but the adhesive strength did not meet the quality standards. Further studies are needed to improve adhesion strength.

Design of Hazardous Fume Exhaust System in Vacuum Pressure Impregnation Process Using CFD (CFD를 이용한 진공가압함침공정 내 유해가스 배출시스템 설계)

  • Jang, Jungyu;Yoo, Yup;Park, Hyundo;Moon, Il;Lim, Baekgyu;Kim, Junghwan;Cho, Hyungtae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.521-531
    • /
    • 2021
  • Vacuum Pressure Impregnation (VPI) is a process that enhances physical properties by coating some types of epoxy resins on windings of stator used in large rotators such as generators and motors. During vacuum and pressurization of the VPI process, resin gas is generated by vaporization of epoxy resin. When the tank is opened for curing after finishing impregnation, resin gas is leaked out of the tank. If the leaked resin gas spreads throughout the workplace, there are safety and environmental problems such as fire, explosion and respiratory problems. So, exhaust system for resin gas is required during the process. In this study, a case study of exhaust efficiency by location of vent was conducted using Computational Fluid Dynamics (CFD) in order to design a system for exhausting resin gas generated by the VPI process. The optimal exhaust system of this study allowed more than 90% of resin gas to be exhausted within 1,800 seconds and reduced the fraction of resin gas below the Low Explosive Limit (LEL).

Oil Storage Tank Inspection using 3D Laser Scanner (3D 레이저스캐너를 활용한 유류 저장탱크의 검사)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.867-872
    • /
    • 2020
  • Oil storage tanks are a major structure in chemical industrial complexes. Damage to the structure due to natural disasters or poor management can cause additional damage, such as leakage of chemicals, fire, and explosion, so it is essential to understand the deformation. In this study, data on oil storage tanks were acquired using a 3D laser scanner, and various analyzes were performed for storage tank management by comparing them with design data. Modeling of the oil storage tank was performed using the data and design drawings acquired by a 3D laser scanner. An inspection of the oil storage tank was effectively performed by overlapping. In addition, cross-sectional and exploded views of the deformation were produced to generate visible data on the deformation of the facility, and it was suggested that the oil storage tank had a maximum deformation of -7.16mm through quantitative analysis. Data that can be used for additional work was obtained by producing drawings to be precisely inspected for areas with large deformation. In the future, an inspection of oil storage tanks using 3D laser scanners is quantitative and visible data on oil storage tank deformation. This will greatly improve the efficiency of facility management by rebuilding it.

1H NMR Kinetic Studies for Degradation of Nitramine Explosives Using PdO Nanoparticle (PdO 나노입자를 이용한 니트라민 폭발물 분해반응에 대한 1H NMR 반응속도연구)

  • Kye, Young-Sik;Kumbier, Mathew;Kim, Dongwook;Harbison, Gerard S.;Langell, Marjorie A.
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.302-308
    • /
    • 2022
  • The PdO nanoparticle with large surface area was selected to solve the environmental pollution problem at fire range caused by high energy explosives research department explosive (RDX) and high melting explosive (HMX). By simulating water pollution, RDX and HMX nitramine explosives were dissolved in water, followed by the degradation reaction at 313 K by adding PdO. In order to measure the degradation reaction rate of explosives, 1H NMR was used, which can monitor the reaction rate without losing sample during reaction, and observe the progress of the reaction through the spectrum. The results showed that the degradation of RDX and HMX by PdO nanoparticles are pseudo-first order reaction. The degradation of explosives compounds were observed via the chemical shift and peak intensity analysis of NMR peaks. The measured rate constants for these reactions of RDX and HMX were 2.10 × 10-2 and 6.35 × 10-4 h-1, respectively. This study showed that the application of PdO nanoparticles for explosives degradation is a feasible option.

Research on Overheating Prediction Methods for Truck Braking Systems (화물차의 제동장치에서 발생하는 과열 예측방안 연구)

  • Beom Seok Chae;Young Jin Kim;Hyung Jin Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.54-61
    • /
    • 2024
  • Recently, due to the increase in domestic and international online e-commerce platforms and the increase in container traffic at domestic ports, the operating ratio of large trucks has increased, and the number of truck fires is continuously increasing. In particular, spontaneous combustion is the most common cause of truck fires. Various academic approaches have been attempted to prevent truck fires, but due to the lack of research on the spontaneous tire ignition phenomenon that occurs during braking, this research directly designed and manufactured an experimental device to establish an environment similar to the braking system of a truck. A non-contact temperature sensor was installed on the brake device of the experimental device to collect temperature data generated from the brake device. Based on the data collected from the temperature sensor of the brake device and the temperature sensor on the tire surface, the ARIMA model among the time series prediction models was used to Appropriate parameters were selected to suit the temperature change trend, and as a result of comparing and analyzing the measured and predicted data, an accuracy of over 90% was obtained. Based on this, a plan was proposed to reduce the rate of fires in trucks by providing real-time warnings and support for truck drivers to respond to overheating phenomena occurring in the braking system.

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF