Browse > Article
http://dx.doi.org/10.14478/ace.2022.1032

1H NMR Kinetic Studies for Degradation of Nitramine Explosives Using PdO Nanoparticle  

Kye, Young-Sik (Department of Physics and Chemistry, Korea Military Academy)
Kumbier, Mathew (Department of Chemistry, University of Nebraska-Lincoln)
Kim, Dongwook (Department of Physics and Chemistry, Korea Military Academy)
Harbison, Gerard S. (Department of Chemistry, University of Nebraska-Lincoln)
Langell, Marjorie A. (Department of Chemistry, University of Nebraska-Lincoln)
Publication Information
Applied Chemistry for Engineering / v.33, no.3, 2022 , pp. 302-308 More about this Journal
Abstract
The PdO nanoparticle with large surface area was selected to solve the environmental pollution problem at fire range caused by high energy explosives research department explosive (RDX) and high melting explosive (HMX). By simulating water pollution, RDX and HMX nitramine explosives were dissolved in water, followed by the degradation reaction at 313 K by adding PdO. In order to measure the degradation reaction rate of explosives, 1H NMR was used, which can monitor the reaction rate without losing sample during reaction, and observe the progress of the reaction through the spectrum. The results showed that the degradation of RDX and HMX by PdO nanoparticles are pseudo-first order reaction. The degradation of explosives compounds were observed via the chemical shift and peak intensity analysis of NMR peaks. The measured rate constants for these reactions of RDX and HMX were 2.10 × 10-2 and 6.35 × 10-4 h-1, respectively. This study showed that the application of PdO nanoparticles for explosives degradation is a feasible option.
Keywords
RDX; HMX; PdO; NMR; Kinetics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Etnier, Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX), Regul. Toxicol. Pharmacol., 9, 147-157 (1989).   DOI
2 J. Aalto, Management of the groundwater contaminated by military explosives, Master of Science Thesis, Tampere University of Technology, Tampere, Finland (2016).
3 Z. Matys D. Powala, A. Orzechowski, and A. Maranda, Methods for obtaining octogen (HMX), CHEMIK, 66, 58-63 (2012).
4 H. M. Heilmann, U. Wiesmann, and M. K. Stenstrom, Kinetics of the alkaline hydrolysis of high explosives RDX and HMX in aqueous solution and adsorbed to activated carbon, Environ. Sci. Technol., 30, 1485-1492 (1996).   DOI
5 R. E. Card, Jr. and R. Autenrieth, Treatment of HMX and RDX contamination, 9-10, ANRCP-1998-2, Amarillo National Resource Center for Plutonium, Amarillo, Texas (1998).
6 R. M. X. Hesselmann and M. K. Stenstrom, Treatment concept for RDX-containing waste waters using activated carbon with offline solvent biological regeneration, School of Engineering and Applied Science Report Eng. 94-23, 2-5, University of California, Los Angeles (1994).
7 W. L. McLellan, W. R. Hartley, and M. E. Brower, Health advisory for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), PB90-273525, US Army Medical Research and Development Command, Fort Detrick, Maryland (1988).
8 N. G. McCormick, J. H. Cornell, and H. S. Kaplan, Biodegradation of hexadro-1,3,5-trinitro-1,3,5-triazine, Appl. Environ. Microbiol., 42, 817-823 (1981).   DOI
9 A. Halasz, D. Manno, S. E. Strand, N. C. Bruce, and J. Hawari, Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: New insights into the degradation pathway, Environ. Sci. Technol., 44, 9330-9336 (2010).   DOI
10 J. Hawari, A. Halasz, T. Sheremata, S. Beaudet, C. Groom, L. Paquet, C. Rhofir, G. Ampleman, and S. Thiboutot, Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl. Environ. Microbiol., 66, 2652-2657 (2000).   DOI
11 J. Hawari, A. Halasz, C. Groom, S. Deschamps, L. Paquet, C. Beaulieu, and A. Corriveau, Photodegradation of RDX in aqueous solution: a mechanistic probe for biodegradation with Rhodococcus sp., Environ. Sci. Technol., 36, 5117-5123 (2002).   DOI
12 K. Ayoub, E. D. van Hullebusch, M. Cassir, and A. Bermond, Application of advanced oxidation processes for TNT removal: A review, J. Hazard. Mater., 178, 10-28 (2010).   DOI
13 D. Fournier, A. Halasz, J. Spain, P. Fiurasek, and J. Hawari, Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22, Appl. Environ. Microbiol., 68, 166-172 (2002).   DOI
14 R. G. Jackson, E. L. Rylott, D. Fournier, J. Hawari, and N. C. Bruce, Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B, Proc. Natl. Acad. Sci., 104, 16822-16827 (2007).   DOI
15 M. E. Fuller, N. Perreault, and J. Hawari, Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Lett. Appl. Microbiol., 51, 313-318 (2010).   DOI
16 S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309-319 (1938).   DOI
17 T. L. Hwang and A. J. Shaka, Water suppression using excitation sculpting with gradients, J. Magn. Reson.; Series A, 112, 275-279 (1995).   DOI
18 A. Preiss, K. Levsen, E. Humpfer, and M. Spraul, Application of high-field proton nuclear magnetic resonance (1H-NMR) spectroscopy for the analysis of explosives and related compounds in groundwater samples-a comparison with the high-performance liquid chromatography (HPLC) method, Fresenius J. Anal. Chem., 356, 445-451 (1996).   DOI
19 K. B. Gregory, P. Larese-Casanova, G. F. Parkin, and M. M. Scherer, Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by FeII bound to magnetite, Environ. Sci. Technol., 38, 1408-1414 (2004).   DOI
20 M. C. Lapointe, R. Martel, and D. P. Cassidy, RDX degradation by chemical oxidation using calcium peroxide in bench scale sludge systems, Environ. Res., 188, 109836 (2020).   DOI
21 M. Godejohann, L. Heintz, C. Daolio, J. Berset, and D. Muff, Comprehensive non-targeted analysis of contaminated groundwater of a former ammunition destruction site using 1H-NMR and HPLC-SPE-NMR/TOF-MS, Environ. Sci. Technol., 43, 7055-7061 (2009).   DOI
22 T. Urbanski, Chemistry and Technology of Explosives, Vol. 3, 77-78, Pergamon Press, Oxford (1967).
23 I. Berregi, G. del Campo, R. Caracena, and J. I. Miranda, Quantitative determination of formic acid in apple juices by 1H NMR spectrometry, Talanta, 72, 1049-1053 (2007).   DOI
24 M. Szala and L. Szymanczyk, Analysis of common explosives in different solvents by nuclear magnetic resonance spectroscopy, Cent. Eur. J. Energ. Mater., 11, 129-142 (2014).
25 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, and K. I. Goldberg, NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist, Organometallics, 29, 2176-2179 (2010).   DOI
26 W. E. Bachmann and J. C. Sheehan, A new method of preparing the high explosive RDX, J. Am. Chem. Soc., 71, 1842-1845 (1949).   DOI
27 S. H, Kim, Effect of particle size on thermal property of RDX and HMX, Appl. Chem. Eng., 23, 352-357 (2012).
28 V. K. Balakrishnan, F. Monteil-Rivera, M. A. Gautier, and J. Hawari, Sorption and stability of the polycyclic nitramine explosive CL-20 in soil, J. Environ. Qual., 33, 1362-1368 (2004).   DOI
29 D. Kalderis, A. L. Juhasz, R. Boopathy, and S. Comfort, Soils contaminated with explosives: Environmental fate and evaluation of state-of the-art remediation processes, Pure Appl. Chem., 83, 1407-1484 (2011).   DOI
30 E. S. Fiala, Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane, Cancer, 40, 2436-2445 (1977).   DOI
31 W. L. McLellan, W. R. Hartley, and M. E. Brower, Health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), PB90-273533, US Army Medical Research and Development Command, Fort Detrick, Maryland (1988).
32 V. K. Balakrishnan, A. Halasz, and J. Hawari, Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: New insights into degradation pathways obtained by the observation of novel intermediates, Environ. Sci. Technol., 37, 1838-1843 (2003).   DOI
33 F. Monteil-Rivera, L. Paquet, A. Halasz, M. T. Montgomery, and J. Hawari, Reduction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by zerovalent iron: product distribution, Environ. Sci. Technol., 39, 9725-9731 (2005).   DOI
34 M. Muniz-Miranda, A. Zoppi, F. Muniz-Miranda, and N. Calisi, Palladium oxide nanoparticles: preparation, characterization and catalytic activity evaluation, Coatings, 10, 207 (2020).   DOI
35 H. H. Lee, D. H. Jang, and S. C. Hong, A study on the simultaneous oxidation of CH4 and CO over Pd/TiO2 catalyst, Appl. Chem. Eng., 23, 253-258 (2012).
36 E. L. Etnier and W. R. Hartley, Comparison of water quality criterion and lifetime health advisory for hexahydro-1,3,5-trinitro-1,3,5- triazine(RDX), Regul. Toxicol. Pharmacol., 11, 118-122 (1990).   DOI
37 P. Mahbub and P. N. Nesterenko, Application of photo degradation for remediation of cyclic nitramine and nitroaromatic explosives, RSC Adv., 6, 77603 (2016).   DOI
38 M. Vidali, Bioremediation. An overview, Pure Appl. Chem., 73, 1163-1172 (2001).   DOI
39 A. Bernstein and Z. Ronen, Biodegradation of the Explosives TNT, RDX and HMX. In: S. Singh, eds. Microbial Degradation of Xenobiotics, 135-176, Environmental Science and Engineering, Springer, Berlin, Heidelberg (2012).
40 J. Hawari, A. Halasz, S. Beaudet, L. Paquet, G. Ampleman, and S. Thiboutot, Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge, Environ. Sci. Technol., 35, 70-75 (2001).   DOI
41 B. Didillon, E. Merlen, T. Pages, and D. Uzio, From colloidal particles to supported catalysts: a comprehensive study of palladium oxide hydrosols deposited on alumina, Stud. Surf. Sci. Catal., 118, 41-54 (1998).   DOI
42 S. H. Moon, W. J. Lee, and K. Y. Lee, Research trends in chemical analysis based explosive detection techniques, Appl. Chem. Eng., 33, 1-10 (2022).
43 M. J. Liou., M. C. Lu, and J. N. Chen, Oxidation of explosives by Fenton and photo-Fenton processes, Water Res., 37, 3172-3179 (2003).   DOI