• Title/Summary/Keyword: Large Displacements

Search Result 322, Processing Time 0.029 seconds

Large Deflection Analysis of Plates By Using Small Local Deflections And Rotational Unit Vectors (미소 변형 및 회전 단위 벡터를 이용한 판의 대변형 해석)

  • 이기수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.201-210
    • /
    • 2000
  • The large deflection of plate is analyzed by co-rotational formulations using small local displacements and rotating unit vectors on the nodal points. The rotational degrees of the freedom are represent ed by the unit vectors1 In the nodal points, and the equilibrium equations are formulated by using small deflection theories of the plates by assuming that the directions of the unit vectors of the nodal points are known apriori. The translational degrees of freedom are independently solved from the rotational degrees of freedom in the equilibrium equations, and the correct directions of the unit vectors are computed by the iterative scheme by imposing the moment equilibrium constraint. The equilibrium equations and the associated solution procedure are explained, and the verification problems are solved.

  • PDF

Large post-buckling behavior of Timoshenko beams under axial compression loads

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.955-971
    • /
    • 2014
  • Large post-buckling behavior of Timoshenko beams subjected to non-follower axial compression loads are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. Two types of support conditions for the beams are considered. In the case of beams subjected to compression loads, load rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of lower-Carbon Steel. In the study, the relationships between deflections, rotational angles, critical buckling loads, post-buckling configuration, Cauchy stress of the beams and load rising are illustrated in detail in post-buckling case.

Physical Experiments for Large Deformation Problems

  • Yoo, Wan-Suk;Lee, Jeong-Han;Sohn, Jeong-Hyun;Park, Su-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.705-710
    • /
    • 2003
  • Many papers have studied computer simulations of elastic bodies undergoing large deflections and large deformations. But there have not been many attempts to check the validity of the numerical formulations because the simulation results could not be matched without correct input data such as material properties and damping effects. In this paper, these values are obtained from real experiment with a high-speed camera and a data acquisition system. The simulation results with the absolute nodal coordinate formulation (ANCF) are compared with the results of real experiments. Two examples, a thin cantilever beam and a thin plate, are studied to verify whether the simulation results are well matched to experimental results.

  • PDF

Matching of Physical Experiments and Multibody Dynamic Simulation for Large Deformation Problems

  • Yoo, Wan-Suk;Lee, Jeong-Han;Sohn, Jeong-Hyun;Park, Su-Jin;Oleg Dmitrochenko;Dmitri Pogorelov
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.742-752
    • /
    • 2004
  • Many papers have studied computer simulations of elastic bodies undergoing large deflections and large deformations. But there have not been many attempts to check the validity of the numerical formulations because the simulation results could not be matched without correct input data such as material properties and damping effects. In this paper, these values are obtained from real experiment with a high-speed camera and a data acquisition system. The simulation results with the absolute nodal coordinate formulation (ANCF) are compared with the results of real experiments. Two examples, a thin cantilevers beam and a thin plate, are studied to verify whether the simulation results are well matched to experimental results.

On Effects of Large-Deflected Beam Analysis by Iterative Transfer Matrix Approach

  • Sin, Jung-Ho
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.131-136
    • /
    • 1988
  • A small-deflected beam can be easily solved by assuming a linear system. But a large-deflected beam can not be solved by superposition of the displacements, because the system is nonlinear. The solutions for the large-deflection problems can not be obtained directly from elementary beam theory for linearized systems since the basic assumptions are no longer valid. Specifically, elementary theory neglects the square of the first derivative in the beam curvature formula and provides no correction for the shortening of the moment-arm cause by transverse deflection. These two effects must be considered to analyze the large deflection. Through the correction of deflected geometry and internal axial force, the proposed new approach is developed from the linearized beam theory. The solutions from the proposed approach are compared with exact solutions.

  • PDF

Behavior of tunnel under the influence of pre-loading on braced wall during the adjacent ground excavation (근접굴착 시 벽체에 선행하중 재하에 따른 터널의 거동)

  • Kim, Il;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.331-341
    • /
    • 2007
  • Pre-loads could be imposed on the braced wall to prevent the horizontal displacements during the ground excavation adjacent to the existing tunnel. For this purpose, new pre-loading system through which large pre-loads could be applied to the braced wall was used in the model tests. Large scale model tests were performed in the real scale test pit which was 2.0 m in width and 6.0 m in hight and 4.0 m in length. Test ground was constructed by sand. Model tunnel in 1.2 m diameter was constructed before test ground excavation. Test ground was excavated adjacent to existing tunnel and was braced. To investigate the effect of pre-loading, tests without pre-load were also performed. During the ground excavation were the behavior of braced wall, test tunnel, and ground measured. Model tests were also numerically analysed and their results were compared to that of the real scale tests. As a result, it was found that the stability of the existing tunnel was greatly enhanced when the horizontal displacements of braced wall was reduced by applying pre-load larger than the design load.

  • PDF

Behavior Due to Construction Step in Steel Deck Bridge by Large Block Construction Method (대블록시공법에 따른 강상판교의 시공단계별 거동)

  • Lee, Seong-Haeng;Kim, Kyoung-Nam;Hahm, Hyung-Gil;Jung, Kyoung-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • The displacements of steel deck bridge due to construction step are measured, and three dimensional analysis with full modeling is carried out to compare with the measured results. Three dimensional structural analyses considering construction step by large block construction method are accomplished with verified model. The conclusions are as follows. 1. Comparing the data of grid analysis with the result of 3D full modeling in steel deck bridge, the design method using grid analysis has a limit for describing the displacements of curved bridge. The analysis of 3D full modeling has been proved as more accurate method. The differentiation of results in two methods is about 10%~20%. 2. It is verified that the maximum displacement of during construction is 1.7 times larger than the displacement of final construction. 3. The bridge behavior considering the construction step is somewhat different from that of final stage in whole structure and the displacement and stress during construction is larger than that of final construction. Therefore, it needs the reasonable structural design considering the construction step to get economical efficiency and a high competitive construction.

The Strain Corrections for Accuracy Improvement to Predict Large Deformation of Wings (날개 대변형 예측의 정확성 향상을 위한 변형률 보정)

  • Lee, Hansol;Kim, In-Gul;Park, Sunghyun;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The information about the deformations of high-aspect-ratio wings is needed for the real-time monitoring of structural responses. Wing deformation in flight can be predicted by using relationship between the curvatures and the strains on the wing skin. It is also necessary to consider geometric nonlinearity when the large deformation of wing is occurred. The strain distribution on fixed-end is complex in the chordwise direction because of the geometric shape of fixed-wings on fuselages. Hence, the wing displacement can be diversely predicted by the location of the strain sensing lines in the chordwise direction. We conducted a study about prediction method of displacements regardless of the chordwise strain sensing locations. To correct spanwise strains, the ratio of spanwise strain to chordwise strain, Poisson's ratio, and the ratio of the plate strain to the beam strain were used. The predicted displacements using the strain correction were consistent with those calculated by the FEA and verified through the bending testing.

Large Scale Numerical Analysis for the Performance Prediction of Multilayered Composite Curved Actuator (적층 복합재료를 사용한 곡면형 작동기의 성능 예측을 위한 대규모 수치해석 연구)

  • 정순완;황인성;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.167-170
    • /
    • 2003
  • In this paper, the electromechanical displacements of curved actuators using laminated composites are calculated by finite element method to design the optimal configuration of curved actuators. To predict the pre-stress in the device due to the mismatch in coefficients of thermal expansion, the carbon-epoxy and glass- epoxy as well as PZT ceramic is also numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers causes the numbers of degree of freedom to increase, large-scale structural analyses are performed in a cluster system in this study. The curved shape and pre-stress in the actuator are obtained by the cured curvature analysis. The displacement under the piezoelectric force by an applied voltage is also calculated to compare the performance of curved actuator. The thickness of composite is chosen as design factor.

  • PDF

GEOMETRICALLY AND MATERIALLY NONLINEAR ANALYSIS FOR A COMPOSITE PRESSURE VESSEL

  • 도영대;김형근
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.141-153
    • /
    • 1995
  • An incremental Total Lagrangian Formulation is implemented for the finite element analysis of laminated composite pressure vessel with consideration of the material and geometric nonlinearities. For large displacements/large rotations due to geometric nonlinearities, the incremental equations are derived using a quadratic approximation for the increment of the reference vectors in terms of the nodal rotation increments. This approach leads to a complete tangent stiffness matrix. For material nonlinearity, the analysis is performed by using the piecewise linear method, taking account of the nonlinear shear stress-strain relation. The results of numerical tests include the large deflection behavior of the selected composite shell problem. When compared with the previous analysis, tile results are in good agreement with them. As a practical example, filament wound pressure vessel is analyzed with consideration of the geometrically and materially nonlinearity. The numerical results agree fairly well with the existing experimental results.

  • PDF