• Title/Summary/Keyword: Large Displacements

Search Result 323, Processing Time 0.027 seconds

Imperfection sensitivity to elastic buckling of wind loaded open cylindrical tanks

  • Godoy, Luis A.;Flores, Fernando G.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.533-542
    • /
    • 2002
  • This paper considers the buckling and post-buckling behavior of empty metal storage tanks under wind load. The structures of such tanks may be idealized as cantilever cylindrical shells, and the structural response is investigated using a computational model. The modeling employs a doubly curved finite element based on a theory by Simo and coworkers, which is capable of handling large displacements and plasticity. Buckling results for tanks with four different geometric relations are presented to consider the influence of the ratios between the radius and the height of the shell (R/L), and between the radius and the thickness (R/t). The studies aim to clarify the differences in the shells regarding their imperfection-sensitivity. The results show that thin-walled short tanks, with R/L = 3, display high imperfection sensitivity, while tanks with R/L = 0.5 are almost insensitive to imperfections. Changes in the total potential energy of tanks that would buckle under the same high wind pressures are also considered.

Modelling time-dependent cracking in reinforced concrete using bond-slip Interface elements

  • Chong, Kak Tien;Gilbert, R. Ian;Foster, Stephen J.
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.151-168
    • /
    • 2004
  • A two-dimensional nonlinear finite element model is developed to simulate time-dependent cracking of reinforced concrete members under service loads. To predict localized cracking, the crack band model is employed to model individual crack opening. In conjunction with the crack band model, a bond-interface element is used to model the slip between concrete and reinforcing steel permitting large slip displacements between the concrete element nodes and the steel truss element nodes at crack openings. The time-dependent effects of concrete creep and shrinkage are incorporated into the smeared crack model as inelastic pre-strains in an iterative solution procedure. Two test examples are shown to verify the finite element model with good agreement between the model and the observed test results.

MODIFIED POSTERIOR TIME-STEP ADJUSTMENT TECHNIQUE FOR MDOF SYSTEM IN SUBSTRUCTURING PSEUDODYNAMIC TEST (부분구조 유사동적법에 있어 다자유도 시스템에 대한 수정 시간증분 조정기법)

  • 이원호;강정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.473-480
    • /
    • 1998
  • The substructuring pseudodynamic test is a hybrid testing method consisting of a numerical simulation of the earthquake response of an analytical model and a loading test of a specimen. The substructuring pseudodynamic testing technique has been applied to various seismic experiments since it has advantages over the shaking table test to study dynamic behaviors of relatively large scale structures. However, experimental errors are inevitable in substructuring pseudodynamic testing. Some of these errors can be monitored during the test, but, due to limitations in control system, they cannot be eliminated. For example, one cannot control exactly the displacements that are actually imposed on the structures at each time step. This paper focuses on a technique to minimize the cumulative effect of such control errors for MDOF system. For this purpose, the modified posterior adjustment of the time increment from a target value $\Delta$t$_{n}$ to an adjusted value is performed to minimize the effect of the control errors for MDOF system.for MDOF system.

  • PDF

Random Vibration of Coupled Beams (연결된 보의 랜덤진동해석)

  • 김현실;강현주;김재승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2491-2497
    • /
    • 1993
  • Random vibration of the coupled identical beams subject to band-limted white noise is studied. The mean-square displacements average dspatially over each beam are derived analytically using two different modal analysis techniques and compared to the results by SEA(Statistical Energy Analysis). It is shown that when frequency is high and a large number of modes are included in the frequency band, the modal analysis methods and the SEA yield the same results provided that the loss factors are very small and the modal separation is much larger than the half-power bandwidth.

Seismic Responses of Seismically Isolated Nuclear Power Plant Structure Considering Post-Yield Stiffness of EQS Bearing (EQS 면진장치의 항복 후 강성을 고려한 면진 원전구조물의 지진응답)

  • Kim, Byeong-Su;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.319-329
    • /
    • 2016
  • The Eradi Quake System (EQS) is a seismic isolation bearing system designed to minimize forces and displacements experienced by structures subjected to ground motion. The EQS dissipates seismic energy through friction of Poly Tetra Fluoro Ethylene (PTFE) disk pad. In general, a force-displacement relationship of EQS has post yield stiffness hardening during large inelastic displacement. In this study, seismic responses of seismically isolated nuclear power plant (NPP) subjected to design basis earthquake (DBE) and beyond design basis earthquakes (150% DBE and 167% DBE) are compared considering the post yield stiffness hardening effect of EQS. From the results, it can be observed that if the post-yield stiffness hardening effect of EQS is increased, the displacement response of EQS is reduced, and the acceleration and shear responses of containment structures of NPP is increased.

Searching for the Steady State of Unstable Link Structures by using Reduced Dimension Technique (차원 저감화기법을 이용한 불안정 링크구조물의 안정경로 탐색)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.39-48
    • /
    • 2004
  • Generally, a structural system with large inextensional deformations, or in other words, non-strained deformation is called as 'Unstable Structure', Truss-linked structures, cable structures, membrane structures and movable structures as foldable space structures etc, are included in this category. In this paper, a dynamic analysis method for unstable structural systems is presented. Governing equations for dynamic analysis of unstable truss structures with inextensional displacements are derived. Because of singularity of inverse matrixin in practical analysis of unstable structure, the generalized inverse matrix is Introduced to resolve the singular problem. Also, the RREF technique is used to get the inextensional displacement mode. Two unstable truss structures are analyzed by using presented method. Damping is not considered. From the given results, it is known that proposed method is useful to figure out the dynamic behavior of unstable truss structures.

  • PDF

Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

Initial Equilibrium States Analysis of Cable Stayed Bridges Using Least Square Method (오차최소화기법을 적용한 사장교의 초기 평형상태 결정)

  • 조현준;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.421-428
    • /
    • 2003
  • For the initial equilibrium states of cable stayed bridges, this study presents a method to determine initial cable forces through successive iteration of the cable forces to minimize the errors between target moments or displacements and result of nonlinear analysis. Stay cables are modeled by truss elements and least square method was used to minimize the errors. In the structural characteristics of cable stayed bridges, a large axial force is introduced in the pylon and stiffening girder so fictitious section areas are assumed to determine initial cable forces accurately. To verify usefulness and validity of the proposed algorithm, some numerical analysis has been conducted and compared with the existing study.

  • PDF

Numerical investigation of the buckling behavior of thin ferrocement stiffened plates

  • Koukouselis, Apostolos;Mistakidis, Euripidis
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.391-410
    • /
    • 2015
  • One of the most common applications of ferrocement is the manufacturing of thin stiffened plates which are prone to buckling. This study focuses on the investigation of the behavior of a ferrocement plate, stiffened in both directions by means of an appropriate grid of ribs. In the present paper detailed three-dimensional numerical Finite Element models are formulated for the simulation of the behavior of the structure under study, which are able to take into account both the geometric and material non-linearities that are present in the subject at hand (plasticity, cracking, large displacements). The difference among the formulated models lies on the use of different types of finite elements. The numerical results obtained by each model are compared and the most efficient model is determined. Finally, this model is in the sequel used for the further investigation of the effect of different parameters on the ultimate load capacity, such as the initial out-of-plane imperfection of the plate and the interaction between the axial loads in both directions.

Nonlinear Analysis of Shell Structures by Improved Degenerated Shell Element (개선된 degenerated 쉘요소를 사용한 쉘구조의 비선형해석)

  • 최창근;유승운
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.18-23
    • /
    • 1990
  • The paper is concerned with the elasto-plastic and geometrically nonlinear analysis of shell structures using an improved degenerated shell element. In the formulation of the improved degenerated shell element, an enhanced interpolation of transverse shear strains in the natural coordinate system is used to overcome the shear locking problems; the reduced integration technique in in-plane strains is applied to avoid membrane locking behavior; selective addition the nonconforming displacement modes improve the element performances. This element is free of serious locking problems and undesirable compatible or commutable spurious kinematic deformation modes and passes the patch tests. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements and rotations. The resulting nonlinear equations are solved by the Newton-Raphson solution scheme. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF