• Title/Summary/Keyword: Large Complex Systems

Search Result 600, Processing Time 0.034 seconds

Hybrid Closed-Form Solution for Wireless Localization with Range Measurements (거리정보 기반 무선위치추정을 위한 혼합 폐쇄형 해)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.633-639
    • /
    • 2013
  • Several estimation methods used in the range measurement based wireless localization area have individual problems. These problems may not occur according to certain application areas. However, these problems may give rise to serious problems in particular applications. In this paper, three methods, ILS (Iterative Least Squares), DS (Direct Solution), and DSRM (Difference of Squared Range Measurements) methods are considered. Problems that can occur in these methods are defined and a simple hybrid solution is presented to solve them. The ILS method is the most frequently used method in wireless localization and has local minimum problems and a large computational burden compared with closed-form solutions. The DS method requires less processing time than the ILS method. However, a solution for this method may include a complex number caused by the relations between the location of reference nodes and range measurement errors. In the near-field region of the complex solution, large estimation errors occur. In the DSRM method, large measurement errors occur when the mobile node is far from the reference nodes due to the combination of range measurement error and range data. This creates the problem of large localization errors. In this paper, these problems are defined and a hybrid localization method is presented to avoid them by integrating the DS and DSRM methods. The defined problems are confirmed and the performance of the presented method is verified by a Monte-Carlo simulation.

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

GENETIC PROGRAMMING OF MULTI-AGENT COOPERATION STRATEGIES FOR TABLE TRANSPORT

  • Cho, Dong-Yeon;Zhang, Byoung-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.170-175
    • /
    • 1998
  • Transporting a large table using multiple robotic agents requires at least two group behaviors of homing and herding which are to bo coordinated in a proper sequence. Existing GP methods for multi-agent learning are not practical enough to find an optimal solution in this domain. To evolve this kind of complex cooperative behavior we use a novel method called fitness switching. This method maintains a pool of basis fitness functions each of which corresponds to a primitive group behavior. The basis functions are then progressively combined into more complex fitness functions to co-evolve more complex behavior. The performance of the presented method is compared with that of two conventional methods. Experimental results show that coevolutionary fitness switching provides an effective mechanism for evolving complex emergent behavior which may not be solved by simple genetic programming.

  • PDF

A Survey on the Standards of EES (Electrical Energy Storage) Systems (전기에너지 저장 시스템 국제 표준화 동향)

  • Jeong, S.;An, Y.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.101-109
    • /
    • 2019
  • Electrical energy storage (EES) systems store generated electricity in energy storage devices such as batteries and discharge the stored energy when necessary. Individual subsystems of the EES system are being standardized independently; however, a holistic understanding of the whole system is necessary because the EES system is large and complex. IEC TC 120 has developed international standards of EES systems. In this paper, EES systems standards in IEC TC 120, including the planning and installation of EES systems, are presented. Further, ongoing standardization for the application of EES systems to backup power and emergency support is described.

New Control System Aspects for Supporting Complex Data and High Performance System

  • Yoo, Dae-Seung;Tan, Vu Van;Yi, Myeong-Jae
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.394-411
    • /
    • 2008
  • The data in automation and control systems can be achieved not only from different field devices but also from different OPC (OLE for Process Control) servers. However, current OPC clients can only read and decode the simple data from OPC servers. They will have some problems to acquire structured data and exchange the structured data. In addition to the large network control systems, the OPC clients can read, write, and subscribe to thousands of data points from/to OPC servers. Due to that, the most important factor for building a high performance and scalable industrial control system is the ability to transfer the process data between server and client in the most efficient and fastest way. In order to solve these problems, we propose a means to implement the OPC DA (Data Access) server supporting the OPC complex data, so that the OPC DA clients are able to read and decode any type of data from OPC servers. We also propose a method for caching the process data in large industrial control systems to overcome the limitation of performance of the pure OPC DA system. The performance analysis and discussion indicate that the proposed system has an acceptable performance and is feasible in order for applying to real-time industrial systems today.

Practical Requirements and Verification Management for Requirements-based Development Process in Space Launch Vehicle Development Project (요구조건 기준의 개발 수행을 위한 우주발사체 개발사업의 실제적인 요구조건-검증 관리 체계)

  • Dong Hyun Cho;Jun Hyouk Jang;Il Sang Yoo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.56-63
    • /
    • 2023
  • For the success of system development, it is necessary to systematically manage the requirements that are the basis of system development and its verification results. In order to follow the principles of SE(Systems Engineering)-based V&V(Verification&Validation) process, requirements can be managed by securing the requirements and their establishments, design compliances, and verification compliances according to the system development lifecycle. Especially, in a large-complex system research and development project, such as a space launch vehicle development project, many participants establish, verify, and validate numerous requirements together during the project. Therefore, logical and systematic requirements management, including guarantee of data integrity, change history, and traceability, is very important for multiple participants to utilize numerous requirements together without errors. This paper introduces the practical requirements and verification management for the requirements-based development process in the space launch vehicle development project.

SAFETY OF TRANSPORT SYSTEMS: MONITORING OF PREDICTING, FUNCTIONAL RELIABILITY PROVISION

  • Pavlovich, Khomenko Andrey;Viktorovich, Eliseev Sergey;Alekseevich, Djachenko Anatolij
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1913-1919
    • /
    • 2007
  • Substantive provisions of the concept of an estimation and safety of complex technical systems are envisaged. New problems are assume orientation to use of the formalized methods of an estimation of residual resources of reliability of objects, and also development of other methodological base in creation of complex technical systems that is connected with detailed elaboration of attention to a safety at all stages of creation of systems: from designing until operation. In this connection existing large objects should be provided by the developed systems of engineering monitoring and diagnostics.

  • PDF

A Method to Accelerate Convergence of Hessenberg process for Small Signal Stability Analysis of Large Scale Power Systems (대규모 전력계통의 미소신호 안정도 해석을 위한 Hessenberg Process의 수렴특성 가속화 방법)

  • Song, Sung-Geun;Nam, Ha-Kon;Shim, Kwan-Shik;Moon, Chae-Ju;Kim, Yong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.871-874
    • /
    • 1998
  • It is most important in small signal stability analysis of large scale power systems to compute only the dominant eigenvalues selectively with numerical stability and efficiency. Hessenberg process is numerically very stable and identifies the largest eigenvalues in magnitude. Hence, transformed system matrix must be used with the process. Inverse transformation with complex shift provides high selectivity centered on the shift, but does not possess the desired property of computing the dominant mode first. Thus, advantage of high selectivity of the transformation can be fully utilized only when the complex shift is given close to the dominant eigenvalues. In this paper, complex shift is determined by Fourier transforming the results of dynamic simulation with PTI's PSS/E transient simulation program. The convergence in Hessenberg process is accelerated using the iterative scheme. Overall, a numerically stable and very efficient small signal stability program is obtained. The stability and efficiency of the program has been validated against New England 10-machines 39-bus system and KEPCO system.

  • PDF

Technical Management Processes for Large National R&D Projects : Focused on Pyro Project (대형 국가 R&D 프로젝트의 기술관리 프로세스 : 파이로 프로젝트를 중심으로)

  • Kim, Jeong-Guk;Ko, Won-Il;Ku, Jeong-Hoe;Nam, Hyo-On
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 2017
  • The Pyro project, one of the large national R&D project to construct Korea Advanced Pyroprocessing Facility (KAPF), which has many goals such as development of pyro technology and process equipment, design of equipment and facility, construction, and test operation, is now under research and development. To reduce uncertainty and risk of such complex project, the technical management processes in systems engineering standards and NASA handbook were reviewed, and then the ten common technical management processes were selected for the large national R&D project to meet its goal successfully. And the essential technical management processes were finally suggested for Pyro project in consideration of current situation of the project.