New Control System Aspects for Supporting
Complex Data and High Performance System

Dae-Seung Yoo, Vu Van Tan, and Myeong-Jae Yi
School of Computer Engineering and IT, University of Ulsan,
San-29, Moogu 2 Dong, Namgu, Ulsan 680-749, Republic of Korea
{ooseyds, vvtan, ymj}@mail.ulsan.ac.kr

Received 27 June 2008; Accepted 29 August 2008

The data in automation and control systems can be achieved not only from different field
devices but also from different OPC (OLE for Process Control) servers. However, current OPC
clients can only read and decode the simple data from OPC servers. They will have some
problems to acquire structured data and exchange the structured data. In addition to the large
network control systems, the OPC clients can read, write, and subscribe to thousands of data
points from/to OPC servers. Due to that, the most important factor for building a high
performance and scalable industrial control system is the ability to transfer the process data
between server and client in the most efficient and fastest way. In order to solve these problemns,
we propose a means to implement the OPC DA (Data Access) server supporting the OPC
complex data, so that the OPC DA clients are able to read and decode any type of data from
OPC servers. We also propose a method for caching the process data in large industrial control
systems to overcome the limitation of performance of the pure OPC DA system. The
performance analysis and discussion indicate that the proposed system has an acceptable
performance and is feasible in order for applying to real-time industrial systems today.

Categories and Subject Descriptors: System and Architecture [Distributed Systems]
General Terms: Complex data, data caching, large control network, OPC data access

Additional Key Words and Phrases: High performance, industrial system, real-time

1. INTRODUCTION

In industrial systems the scalar data can present machine operating parameters from
analogue measurements such as pressure, temperature, flow, level, and vibration, or
discrete signals used to represent on/off state or abnormal condition [Holley 2004].
However, the OPC clients only might be able to read and decode the data as a simple
data type. They have some problems to achieve the structured data and exchange

Copyright(c)2008 by The Korean Institute of Information Scientists and Engineers (KIISE).
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Permission to
post author-prepared versions of the work on author’s personal web pages or on the noncommercial
servers of their employer is granted without fee provided that the KIISE citation and notice of
the copyright are included. Copyrights for components of this work owned by authors other than
KIISE must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires an explicit prior permission and/or a fee.
Request permission to republish from: JCSE Editorial Office, KIISE. FAX +82 2 521 1352 or
email office@kiise.org. The Office must receive a signed hard copy of the Copyright form.

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008, Pages 394-411.

New Control System Aspects for Supporting Complex Data and High Performance System 395

the structured data between the collaborating applications. The OPC complex data
specification was therefore proposed to overcome this limitation [Tan et al. 2006;
TheOPCFoundation 2003]. The OPC complex data working group was making
enhancements to the OPC DA specification based on requirements and feedback
from other industrial groups to address additional types of data such as structures,
arrays, binary, XML documents and dictionary. The OPC complex data provide a
full way to read and decode any type of data from OPC servers. Actually, the OPC
complex data are defined by OPC complex data items that are composed of a
combination of the structured data, simple items, complex items, and so forth
[TheOPCFoundation 2003; 2004]. The OPC Foundation® has provided some complex
data implementation code example for developers and programmers in order to
reduce the implementation cost and time on their system developments. Based on
the OPC complex data specification, we propose an approach in order to implement
the OPC DA products for supporting complex data structure.

The clients in the large network control can read, write, and subscribe to the
thousands of data points from/to servers. Nowadays, one of the most popular
standards is the OPC DA in real-time applications. OPC DA interfaces together
with DCOM (Distributed Component Object Model) are used to easily establish a
communication between network control system components running on various
computer nodes. The OPC DA server exposes a set of OPC DA interfaces that have
functions to browse, read, and write to variable values. But the OPC DA standard
has a disadvantage that no mechanism for data compression is supported. This is one
of the reasons, which may create performance problem for large data transfers in the
control network [TheOPCFoundation 2003].

In use today the data caching is widely a classic and successful technique to improve
the performance of software programs by exploiting temporal references and providing
high-bandwidth, low-latency access to the data cache. In the client-server architecture
model of software programs, the data caching was typically implemented on the
server-side because it is simpler to implement and easier to synchronize and maintain.
All programs running on the clients may equally use server-side cache whether they
hopefully require a fast access to the process data. The main weakness of the server-
side data caching is when the software programs running on the client require a large
amount of the process data, the data transfer from server’s cache to the clients may
become a performance bottleneck as it is the case of the client-server applications
using the OPC DA standard for large data transfers [Iwanitz and Lange 2006;
Veryha 2005].

The client data caching has been widely used in DBMS (Database Management
System) and Web applications [Cao and Liu 1998; Teng et al. 2005; Carpenter et al.
2001; Wang et al. 2006; Franklin 1996; Yang and Zhang 2001; Barish and Obracke
2000; Franklin et al. 2006]. [Cao and Liu 1998] compared three consistent approaches
such as adaptive time-to-live, polling-every-time, and snvalidation through their
analysis and implementation. [Teng et al. 2005] proposed the Web Caching and
Web Pre-fetching in the client-side proxies by using IWCP (Integration of Web

"http://opcfoundation.org/

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

396 Dae-Seung Yoo et al.

Caching and Pre-fetching) algorithm. The data caching in client-server systems
based on the data-shipping approach is represented [Franklin et al. 2006]. [Gopalan
et al. 2002] proposed an approach to focus on the cache coherency that is ensured in
cooperation with the server-side database agent where communication is established
through the use of persistent socket connections between the client-side agents and
the database agent. Changes to the database can be propagated to all client agents
ensuring that only current information is stored in the client agents’ caches,

[Veryha 2005] presented a solution to improve the performance of the pure OPC
DA system by using cache technique. The data caching was implemented in the
client-side in order for overcoming the limitation of the OPC DA performances.
Unfortunately, the system performance related to the complex data has not evaluated.
To overcome the limitation of the pure OPC DA performances, we also propose an
approach to implement the data caching technique in both client-side and server-
side. The proposed approach improves the limitation of performances of the pure
OPC DA products, which are widely used for control and automation system, when
OPC client requests a large amount of data points.

This paper is organized as follows: The next section reviews the OPC data access
and complex data specifications, and provides problem statements under consideration
of some related works. Section 3 introduces the design and implementation of the
OPC DA system for supporting the OPC complex data. Section 4 presents a
mechanism for embedding data caching into both OPC DA server and OPC DA
client. Section 5 discusses the performance evaluation and analysis of the proposed
system. They significantly demonstrate that the proposed system has an acceptable
performance and is feasible to support real-time industrial systems. In summary,
some conclusions and future work will be marked in Section 6.

2. BACKGROUND AND PROBLEM STATEMENTS

In order to provide the relevant OPC technologies and problem statements, this
section first presents an overview of the OPC DA specification and the OPC complex
data specification in Section 2.1 and Section 2.2, respectively. The problem statements
under consideration of related works are then analyzed in Section 2.3.

2.1 OPC Data Access

Developed by an automation software and hardware vendor consortium, the OPC
Foundation, OPC is the first automation-domain specific component standard for
control systems. OPC standardizes the mechanism for communicating a numerous
data sources, whether they are hardware I/O devices on the plant floor or databases
in control rooms. OPC interfaces which are provided by OPC servers let any client
access the server devices. In general, the OPC DA specification defines a set of standard
COM objects, methods, and properties that specifically address interoperability
requirements for the factory real-time automation, process control, and condition
monitoring applications [TheOPCFoundation 2004].

In OPC client-server architecture model, server applications acquire, contain, and
serve data to client applications effectively. The OPC servers provide a standard

Journal of Computing Science and Engineering, Vol, 2, No. 4, Decernber 2008

New Control System Aspects for Supporting Complex Data and High Performance System 397

interface to OPC COM objects, letting OPC clients exchange data and control
command in a generic way. The OPC client also can communicate with one or more
OPC servers from different suppliers. Thus the OPC clients can access to the data in
the same way, whether data are coming from an OPC server connected to a PLC
(Programmable Logic Control system); industrial networks such as FOUNDATION
Fieldbus, PROFIBUS, or DeviceNet; SCADA (Supervisory, Control, and Data
Acquisition system); a product management system, and so forth based on DCOM
leverages for permitting client-server applications to access plant floor data via an
Ethernet network.

The operations for accessing items’ values are Read and Write. Both operations
allow to access several items with a single call. The OPC operations Browse and
GetProperties are used to query OPC items which are available and to get the
properties of the OPC items. Browse allows querying an OPC item’s immediate
successors including filtering and can return property values of the item found.
Property values can also be retrieved with GetProperties. The operation GetStatus is
used to retrieve the status of the OPC server for the OPC clients.

Several communication mechanisms are used to communicate between the OPC
client and the QPC server such as synchronous calls, asynchronous calls, refresh,
and subscription. The refresh and subscription are callback mechanism used to access
predefined sets of data points on the plant floor. The communication between the
OPC DA components and the behavior of the OPC server can be controlled by the
OPC clients.

2.2 OPC Complex Data

The OPC complex data initiative will provide a way for the OPC client application
to read and decode any type of data from OPC servers. Complex data mean an OPC
DA item that has a defined structure. The OPC DA item includes read-only
information, run-time status, and writable control points. The OPC complex data
contains OPC complex data items [TheOPCFoundation 2003].

The OPC complex data items can include non-structured items, abstract elements,
abstract items, structured items, strings, integers, sequences of bytes, XML data,
OPC binary and so forth. Each data item is accompanied by a Data Type Description
that defines the structure of the item and a Dictionary described each of the Data
Types. The dictionary contains all information that the OPC client needs to be
recognized the complex data item it is receiving.

The OPC complex data specification defined two type systems that provide the
level of capability, XML schema and OPC binary. The XML schema describes complex
data values that are presented in XML. The OPC binary which is used to present
complex binary values has defined the format of OPC binary dictionaries.

2.3 Problem Statements

The data in the industrial systems can be normally acquired not only from different
field systems and devices, but also from different OPC servers. Currently, OPC
clients can only read and decode the data as a simple data type. However, the data

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

398 Dae-Seung Yoo et al.

from the hardware I/O devices are complex data such as pressure, temperature, flow,
level, and vibration or discrete signals, and so forth [Tan et al. 2006; TheOPC-
Foundation 2003; Iwanitz and Lange 2006]. In addition to the automation and
control systems the OPC clients can read, write, and subscribe to thousands of data
points from various I/0 devices through the OPC servers. For a graphical presentation
of the large data mounts of the process data on the OPC clients, a large data transfer
from the OPC server to the OPC clients may consume a large amount of the network
bandwidth and operating system resources. Due to these requirements, the additional
improvements for large network control systems using the OPC DA standard are
required to reach an acceptable performance.

There are a number of researches focused on COM technology” to demonstrate
that the COM/DCOM model can guarantee real-time communication to industrial
control systems [Chen et al. 1999; Liu et al. 2005; Kew and Dwolatzky 2001; Fischer
1998]. [Veryha 2005] has suggested the way of using the data caching on the OPC
DA client for improving the performance of the pure OPC DA system. The client
data cache using proprietary socket-based connectivity implemented in C++ is able
to subscribe to server process data. The process data from the Data Access Server
are stored in the client data cache as variables. However, the author has not
investigated the OPC DA performances in which the OPC DA server can permit the
OPC clients to read and decode the complex data from the hardware I/O devices or
OPC servers.

[Kaghazchi et al. 2007] developed an OPC DA server for diagnostics tool capable
of diagnosing multi-field bus. The implemented approach provides a more general
model] for the development of relevant OPC servers for each underlying field bus
network. But the complex data are not included. [Line et al. 2008] have studied the
test of OPC standard as part of process control systems. However, the OPC server
implementation was developed without supporting the complex data.

[Liu et al. 2005] proposed an open, nonproprietary, plug-and-play system for real-
time process monitoring and control based on the OPC DA standards. This system
provides a method for individual process monitoring and process control software to
interact and share the data. Nevertheless, for the large control system the system
performance is not effective because of not using data cache.

[Chilingaryan and Eppler 2005] have developed a high speed protocol used for the
communication between the OPC XML-DA server and its clients with the guarantee
of the complex data. The binary data format was used in the messages in order to
reduce the required size of the message and to ensure high data rate. The performance
of the protocol is not provided due to only some parts of the system being developed.

Up to date, many software companies have developed their OPC DA servers with
supporting the OPC complex data such as [TheAdvosollne 2008; ICONICSInc 2008;
Technosoftware 2008; SoftwareToolbox 2008] and so forth. Unfortunately, the technical
documents related to their systems are not provided because of secret.

In order to solve the problems mentioned above, the design and implementation of
OPC DA system to allow that the OPC client can read and write any type of data
from/to OPC servers or the hardware I/O devices are introduced. The proposed
system also guarantees the ability of supporting high performance using data caching

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

New Control System Aspects for Supporting Complex Data and High Performance System 399

technology. The following issues will be discussed and solved.

(1) Design and implementation of the OPC DA server in guarantee of the complex
data. Both the design of system aspects and the design of Complex Data Modules
for supporting the OPC complex data are presented.

(2) Data caching implementation for both the OPC server and OPC client. A popular
and effective approach to caching the process data in a large control network in
order to improve the performance of the OPC DA system when applying to the
process monitoring and control systems is developed.

3. DESIGN AND IMPLEMENTATION

This section presents a mechanism to implement the OPC DA server for supporting
the complex data. The designs of system aspects and modules for developing and
implementing the proposed system are represented in Section 3.1 and Section 3.2,
respectively. The evaluation of the OPC complex data specification to specify its
limitation is discussed in Section 3.3.

3.1 The Design of System Aspect

As aforementioned the OPC complex data contains OPC complex data items and
can be described as a dictionary. This dictionary defines any type of data from the
hardware I/O devices. When the OPC clients either read or write the data from/to
the Data Access Server®, the Complex Data Modules will detect and convert the data
with the data type and the output format correlatively. The design and implementation

Application Application Application I
OPC DA OPC DA OPC DA
Client (VB) Client (C++) Client (C#)
Wrapper |
1 1 4
OPC DA SERVER]

i

’ OPC Group :L: H

Process Connecﬁon
Ny ek

Measurements, Automation Devices and Systems I

Figure 1. The design and implementation of OPC Complex Data Modules for the OPC DA
server.

The family of COM technologies includes COM+, Distributed COM, and ActiveX Controls.
This term used in this paper is the same meaning with OPC DA Server

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

400 Dae-Seung Yoo et al.

of the OPC DA server to guarantee the complex data are proposed as shown in
Figure 1.

The Data Access Server is notified and received the data from measurements,
automation devices and systems, i.e., hardware I/O devices. After that the data are
recognized and analyzed by the Complex Data Modules. Thus the data are then
stored in an OPC item as a complex data item. Each OPC item contains the access
path, complex data value, timestamp, etc. The OPC group is a collection of the OPC
items that allow the OPC clients to access for reading or writing the process data. A
respective OPC complex data item or a number of the OPC complex data items are
accessed to read or write by the OPC clients that are interested in these OPC items.

In order to realize to the design strategy, when the hardware I/O devices generate
the data, the data are processed by the Complex Data Modules with the Data Access
Server and then are stored in the OPC item, including access path, complex data
value, timestamp and so forth. The Complex Data Modules can support to recognize
and represent both the XML data and OPC binary data. Hence, the OPC DA clients
can understand and decode any type of data from the OPC servers or hardware I/O
devices on the plant floor.

3.2 The Design of Complex Data Modules

The design of the Complex Data Modules that must guarantee to read and write
both system types like OPC binary and XML schema is presented. The OPCComplex-
Data class, which provides a means and methods for processing the complex data,
aggregates two classes such as OPCBinary class and OPCXMLSchema class as shown
in Figure 2. Both classes have defined attributes and operations used for initializing
the Binary Dictionary Definitions and the XML Dictionary Definitions. The OPCDA-

OPCBinary
OPCComplexData
X [OPCXMLSchema
OPCComplexDataStream’
#lnitializeContext()
+o.0)
[]
OPCDAComplexDataWriter OPCDAComplexDataReader
+Write() +Read()
+iriteXML() +ReadXML])
-Write TypeReference() -ReadTypeReference()
-WriteType() -ReadType()
-WriteField() -ReadField{)
-WriteArrayField () -ReadarrayField()
-WriteInteger() -Readinteger{)
=} o)

Figure 2. The class diagram of components of Complex Data Modules.

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

New Control System Aspects for Supporting Complex Data and High Performance System 401

OPCTypeDescription

-TypelD: OPCString
-DefaultBigEndian: Boolean
-DefaultBigEndianspecified: Boolean

Field: OPCRigldType

~Initialize()
+0.0
OPCFieldType DPCTypeDictionary
-Marme: OPCString -Name: ORCString
~Types UNIT -DefaultBigEndian: Bookzan
-Format: OPCString -DefaultChardidth: UNIT
Length: UNIT -DefaultStringEncade: DPCString
-LengthSpecified: Boolean -DefaultFloatFormat: OPCString
-ElementCount: UNIT -Types: OPCTypeDescription
_ Initialize{)
-Initialize () +Clear()
+..0) +.03
|

OPCBinary

-Iritialize)
+Clear()
+Read(}
+Write()
+.0)

Figure 3. The class diagram of components of the OPCBinary class.

ComplexDataStream class initializes the serialization context for reading or writing
the complex data item from/to buffer. Two derived classes from the OPCDA Complez-
DataStream class are OPCDA ComplezDataWriter class and OPCDA ComplexData-
Reader class. The OPCDA ComplexDataWriter class provides functions for writing
the complex data to the buffer. The Write and WriteXML functions are public
functions used to write the OPC binary data or the OPC XML data according to the
functionality. These two functions use some private functions such as WriteType,
WriteField, Write ArrayField, etc. To illustrate the implementation of the proposed
module for application developers and programmers, the function Write can be
implemented in VC++ as the following fragment code.

Bool OPCDAComplexDataWriter::Write(
OPCXMLType& cValue, “
OPCTypeDictionary* pDictionary,
const OPCString& cTypelD,
BYTE** ppBuffer,

UINT* pBufSize)

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

402 Dae-Seung Yoo et al.

//initialize the context in below command
OPCContext cContext;
bool bResult = InitializeContext(pDictionary, cTypeID, cContext);
if ('bResult){
return bResult;
}
UINT uBytesRequired = 0;
bResult = WriteType(cContext, cValue, uBytesRequired);
if ((!bResult) | | (uBytesRequired ==0)){
return false;

}

//allow buffer

cContext.Buffer = allow(BYTE, uBytesRequired);
cContext.BufSize = uBytesRequired;

//set buffer to zero

memset (cContext.Buffer, 0, cContext.BufSize);

UINT uBytesWritten = 0;

bResult = WriteType(cContext, cValue, uBytesWritten);

if (('bResult) | | (uBytesWritten!= uBytesRequired){
//free the buffer
CoTaskMemFree (cContext.Buffer) ;
return false;

}

*ppBuffer = cContext.Buffer;

*pBufSize = cContext.BufSize;

return true; //successfully write

The OPCContext in the fragment code above is a structure used for storing the
current serialization context. The OPCDA ComplexDataReader class provides the
functions for reading the complex data from the buffer. Two main functions such as
Read and Read XML are used in this class. The Read function is used to read the
complex data from the buffer and returns the data as binary data. The Read XML
function is used to read the complex data from the buffer and returns the results as
XML data. To describe the components of the OPCComplezData class, an overview
of these classes is then exposed. The OPCDA Binary class is aggregated with three
classes, OPCFieldType class, OPCTypeDescription class, and OPCTypeDictionary
class as shown in Figure 3. With the OPCFieldType class, it is composed of the
definitions of a field within a type description. The QPCTypeDescription class contains
the description of a type within a dictionary. Finally, the OPCTypeDictionary class
consists of a set of the complex type descriptions describing the complex data types.
In the OPCBinary class, it contains the functions such as Initialize, Read, Write, and
so forth which are used for initializing, reading, and writing the complex data from/
to the buffer, respectively.

The OPCXMLSchema class is developed, as Figure 2 shows, to provide a mechanism
to present data in the XML data formats. It aggregates OPCXMLElement class and

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

New Control System Aspects for Supporting Complex Data and High Performance System 403

DPCXMLElement OPCXMLSchema
J— -mFiePath
-mDocurnent

-Initialize () Initialize()

fg:g\r}xsﬂeeapace() | #5etFilePath()

+GetType () Toethott

: +
+Getattribute() +DefaultNarmeSpace()
+o.() ™ New()
+Save()
, +Load¥ML{)
¥ I +GetXML(}
. +AddMarneSpace()
DPCXMLType OPCXMLAttribute +FindElEment ()
#mbttibute +FindElements()
-Initializel)
+Clear() -Initiglize()
+ReadsXML() +GetMame()
+WriteX ML) +GetNamespace()
+..0) +GetPrefix|)
+0.0)

Figure 4. The class diagram of components of the OPCXMLSchema class.

also contains OPCXMLAttribute class. The OPCXMLSchema class consists of the
needful functions that specifically support to perform and process the XML data.
The OPCXMLElement class is composed of two classes as OPCXML-Type class and
OPCXMLAttribute class. The OPCXML Type class has declarations for XML constants,
types, and functions. There are two important functions in this class like Read XML
and WriteXML. The ReadXML function reads an object from an XML element or
attribute. And the Write XML function is used to write an object to an XML element
or attribute. The OPCXMLAttribute class is to use for representing an XML
attribute. Another is the OPCXMLElement class which facilitates manipulation of
XML elements. Tt has the functions to perform processing of XML elements of the
XML data. The OPCXMLSchema class is designed as shown in Figure 4. The design
of the Complex Data Modules implemented into the OPC DA server has been
represented. As a result, the OPC clients can read and decode any type of data from
the OPC servers and the hardware 1/O devices on the plant floor.

3.3 The Evaluation of the OPC Complex Data Specification

The proposed system is designed and developed according to the design strategy of
supporting the complex data and high performance, respectively. According to the
OPC complex data specification, it seems that this specification has some limitation
for the implementation of an application. A number of evaluations of the OPC
complex data specification are discussed. First, the OPC binary specification is
limited to represent some few complex data types. Nevertheless, the data alignments
are often required to transport the data in native representation. The OPC complex
data based on the use of an XML representation require large amount of memory

and high intensity of memory management operations [Chilingaryan and Eppler
2005].

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

404 Dae-Seung Yoo et al.

On the other hand, the requirement to convert the data between the XML data
representation and the binary data representation makes it difficult to determine the
required size of the memory buffer to hold the whole data. In providing the ability to
support high performance in the automation and control systems, the data cache
technology is increasingly important and is an optimal mechanism to ensure the
guarantee of the large control network. For effective memory space allocation, each
representation of the data item is associated with dedicated cyclic buffer of enough
size. The buffer should be used to store all memory blocks related to the current data
item representation and the corresponding representations of all cached data item
values.

Finally, the fast possible solution to transmit the large amount of data is to use the
binary data representation rather than the pure XML data representation. However,
different platforms even different compilers of the same platform use different binary
data representation such as different floating point formats, different string formats,
and so forth [Eppler et al. 2004]. This is the main drawback when using the OPC
complex data.

4. DATA CACHING DESIGN

To solve the large control network problem that appears in industrial automation
systems, we propose a mechanism for implementing the data caching technology to
overcome the limitation of the pure OPC DA performances. As mentioned, the OPC
clients in control and monitoring systems can often read, write, and subscribe to the
thousands of data points from/to the OPC servers. In addition, the relation between
the OPC servers and clients is n-to-m, i.e., an OPC client can simultaneously interact
with several OPC servers and several OPC clients can access to the same OPC
server. A large amount of data transfers from the OPC servers to the OPC clients
may consume a large amount of the network bandwidth and operating system
resources. Consequently, additional improvements of the OPC DA performances for
large network control systems are required in order for reaching an acceptable
performance. This section introduces the design of Server Data Cache for the OPC
server and the design of Client Data Cache for the OPC client, respectively.

4.1 Server Data Cache

Several OPC clients can simultaneously access to read, write, and subscribe to the
data from the OPC server. Therefore, caching process data in the OPC server-side is
gaining increased importance in the data cache implementation of the OPC DA
products. In the client-server system, the data caching is typically implemented on
the server side because it is simpler to implement and easier to synchronize and
maintain {Carpenter et al. 2001]. This section introduces a mechanism to implement
the data caching into the OPC DA server. The cache server provides high perfor-
mance caching and reduces the overall bandwidth. In addition to reducing the band-
width, it can be easily employed in any distributed system, including on control and
monitoring systems. Alternatively, the data from automation and control systems
are complex data types, so that each OPC item contains the complex data value.

Journal of Computing Science and Engineering, Vol. 2, No, 4, December 2008

New Control System Aspects for Supporting Complex Data and High Performance System 405

Glohal cache for an

OPCDACacthe | . OFC Server
+Read() For single item in the
+Wwrite() OPCDACacheltem the glebal cache in
+Additern() --1an OPC Server
+Remaovealtern{)
+GetProperties() o~
o

0 OPCDATypeDictionary

Figure 5. The class diagram of the OPC Server Data Cache.

Data caching is therefore made for each OPC item stored as a process data variable
in the OPC server.

To effectively manage the OPC complex data items, the OPCDA Dictionary class
that is used for managing the complex item types and complex type descriptions is
created as shown in Figure 5. The OPCDA Cacheltern class used for single OPC item
in the global cache in an OPC server is also created. The OPCDA Cache class is
composed of such two classes above. When a hardware I/O device generates new
data, an OPC server is notified and received the data from it. The data stored in an
OPC complex item are identified as a process variable. An OPC server has a list of
the OPC clients which are subscribed to the server data generated by the hardware
1/0O devices on the plant floor.

In responding and receiving the data element from the hardware 1/0 devices, the
OPC server sends the process data over the network to a respective OPC client or to
a list of the OPC clients which are interested in the data. To utilize the data caching
performances on the OPC server side, the OPC DA Server Data Cache is controlled
by a caching management that performs a removal of seldom used or unimportant
OPC items to free some mernory. As shown in Figure 6, the OPC complex items are
placed as process variables in the OPC DA server in which they are variables to store
the process data from the hardware I/O devices on the plant floor.

4,2 Client Data Cache

Data caching at the client side is indeed common for the implementation of a system
in the client-server systems to reduce both database load and network traffic. We
introduce an approach in order to implement a cache technology in the OPC client
side. All OPC iterns contained in the Client Data Cache are further available as the
OPC items using OPC DA interface that is provided for the client data cache. This
approach is especially important for HMI (Human Machine Interface) components
that allow clients to be able to subscribe to a large amount of the process data. The
data available will be largely improved due to the lack of data transfer over the
network between the client data cache and client HMI components. As discussed
previously, an OPC item will contain such values as compler data, timestamp, and
quelity for reading, writing, and subscribing from/to the OPC servers acquired by
the OPC clients. When the OPC server is notified and received the new data from
the hardware I/O devices on the plant floors, it will send the changed data over the
network to a respective OPC client or to each of a number of the OPC clients which

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

406 Dae-Seung Yoo et al.

| OPC DA Client | OPC DA Client
i1t i1a
| OPC DA Interface | OPC DA Interface

B
L B

eistent

""""""" | S U

Functions for Processing the Data,
Caching Management

i}

Brocess Conmcction

iy i
Measurements, Automation Devices and Systems l

Figure 6. The architecture of the data caching design for the OPC client-server model used in
process control and monitoring systems.

are interested in the data.

In the strategy of the caching technologies, the most important features in the
OPC Client Data Cache are to allow customizing how the OPC items are cached and
how long they are cached. Thus the OPC Client Data Cache needs a caching
management that performs a removal of seldom used or unimportant items to free
some memory. On the other hand, the caching management can be done during
adding an OPC item into the OPC Client Data Cache. To apply the algorithm for
solving these problems, some caching techniques can be applied such as client
polling, invalidation callback, time-to-live, and so forth [Carpenter et al. 2001; Bar-
ish and Obracke 2000]. The idea is to partition the cache into expired and fresh data
at the time when an eviction is to occur. If the expiration time associated with the
version of the item is after next request, then the item is fresh; if it is before the
request time, then the item is expired.

As Figure 6 shows, the data cache architecture model in the OPC client is presented.
The data generated from the hardware I/ devices on the plant floor are updated to
the OPC servers and then the OPC server will send its new data to the OPC clients
which are interested in the data. The OPC clients will store the data in the OPC
Client Data Cache as client variables that will be refreshed when respective OPC
items are to expire. The algorithm of caching the process data in the OPC client is
proposed as shown in Table L.

5. PERFORMANCE EVALUATION AND DISCUSSION

The proposed system first supports the OPC DA clients to read or write the data as
complex data types from/to the hardware 1/O devices on the plant floor and OPC
servers. It allows applying to the real automation and control systems where the

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

New Control System Aspects for Supporting Complex Data and High Performance System 407

Table I. The algorithm of caching the process data for the OPC client in the OPC client-server
model.
ALGORITHM 1: CLIENT DATA CACHING

INPUT:
« OPC items
OUTPUT:
* Data caching for OPC items was added in the Client Data Cache

1. if (OPC item is not in Cache) then

Fetching the values, i.e, complex data, timestamp, and quality, from original server and
sending them to the client

3. if (Cache size is enough) then

4 Inserting this OPC item into the OPC Client Data Cache
5 Updating the data

6. else
7
8
9

D

Removing the seldom used or unimportant OPC items
Inserting this OPC items into the OPC Client Data Cache
Updating the data

10. end if

11. else

12. if (Expiration time is before the request time) then

13. Fetching from the original OPC servers those hinted objects triggered by requesting
new data,

14. Sending the values, i.e., complex data, timestamp, and quality, to the Client Data
Cache

15. Evicting expiration value, i.e., old values

16. Updating the data

17. end if

18. end if

data include simple and complex data. Moreover, the communication between the
OPC clients and the OPC servers is n-to-m, i.e., an OPC client can simultaneously
interact with several OPC servers and several OPC clients can access the same OPC
server. The data caching in both the OPC servers and the OPC clients is therefore
truly needed. With the data caching in the OPC server, the data are stored in the
OPC itemns as process variables.

When the hardware I/O devices generate the data, these data will be acquired to
store in the process variables if necessary. As a result, the OPC clients can subscribe
to the data from the OPC servers easily and effectively. The caching management
performs a removal of seldom used or unimportant OPC items to free some memory
as well as possible. In addition to the data caching in the OPC clients side, the OPC
Client Data Cache allows easily customizing how the OPC items are cached and how
long they are cached, so that the life of the OPC items is effectively managed. The
caching management can be done during adding an OPC item into the OPC Client
Data Cache to indicate that the design is flexible. Moreover, the OPC item value in
the OPC clients will be refreshed when the data from the OPC servers are changed

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

408 Dae-Seung Yoo et al.

OPC Client OPC DA Server

Proprietary Messaging
OPC Data Access

Figure 7. The illustration of deploying the proposed system to real-time industrial systems.

by calling the callback function in the OPC clients. By this way, the data from the
hardware I/O devices are only updated to the OPC items when their data really
need to be updated. Consequently, the amount of bandwidth and operating system
resources are reduced as much as possible. The system performance indicated that
the proposed approach has an acceptable performance to real-time industrial
systems that strictly require high performance.

By comparing with the normal OPC DA product, i.e., without any performance
improvement implementations, the performance of the proposed system with cache
techniques is about several times higher than the normal OPC DA product’s perfor-
mance. In industrial systems today, the OPC technology-based applications normally
control and monitor more than the hundreds or thousands of devices, so that the
optimized software for control and monitoring systems is needed to be developed and
deployed. The proposed solutions in this paper are to improve the performance of
these systems when the number of the OPC items in the client for request is largely
increased. The illustration of deploying the proposed system into real-time industrial
systems for controlling and monitoring the hardware 1/0 devices on the plant floor is
shown in Figure 7.

To compare the proposed system with others, it is difficult to conduct a fair com-
parison of different proposals and architectures because of their conceptual design
and wide range of experimental environment setup. Thus the structural characteristics
of the proposed system such as ability, adaptability, scalability, and so forth are used
to compare it with others. Therefore, a qualitative comparison of the proposed
system and the existing approaches could be made. The overall evaluation when
comparing the proposed system with the existing approaches [TheOPCFoundation

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

New Control System Aspects for Supporting Complex Data and High Performance System 409

Table II. The comparison between the proposed system and existing approaches according to
the qualitative intention with the six factors.

The proposed The OPC DA [Chilingaryan
system implementation [Veryha 2005] et al. 2005]
Complex data, v v
Server data v v v
cache
Client data v v
cache
Ability to reuse v v
components
High v v
performance
support
Scalability v
Overall good none fair fair
evaluation

2003; Vervha 2005; Chilingaryan and Eppler 2005] can be summarized in Table IL
This overall result indicates that the proposed system is good and makes it easy in
order to reuse and maintain the developed components.

6. CONCLUDING REMARKS AND FUTURE WORK

This paper has introduced the design and implementation of the OPC DA system in
order to support complex data and high performance, applying to control and
monitoring systems, e.g., SCADA. The proposed system is optimal for supporting
OPC DA clients to read and decode any type of data from the hardware I/O devices
on the plant floor. This solution is simple to implement and easy to maintain the
implemented components in the OPC DA servers. Moreover, an effective approach
to improve the performance of a system by using data cache techniques is presented.
This approach is powerful and easy-to-use client’s and server’s data caching to
overcome the limitation of the performance of the pure OPC DA systems. It has
solved the problems when the large amounts of data are transferred between the
OPC DA clients and the OPC DA servers. Additionally, it is easy to integrate to
applications that achieve the process data through the OPC DA products today.

The system performance and analysis have indicated that the proposed system has
a good performance and is feasible for supporting the real-time industrial control
systems. The proposed system is optimal and affordable when comparing it with the
normal OPC DA systems.

In addition to the control and monitoring systems, the applications have stringent
real-time constraints, service-depend expiration times. Due to them, the real-time
benefits of caching the process data from the plant floor must be carefully assessed in
future work. On the other hand, the security for OPC DA standard-based systems is
also strictly required. The security guarantee will be significantly integrated in the
proposed system in the future work.

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

410 Dae-Seung Yoo et al.

ACKNOWLEDGMENTS

The authors would like to thank the Korea Ministry of Knowledge Economy, Ulsan
Metropolitan City, University of Ulsan, and the Network-based Automation Research
Center (NARC) which partly supported this research. The authors also would like to
thank the anonymous reviewers for their carefully reading and commenting this paper.

REFERENCES

BaRrisH, G. AND K. OBRACKE. 2000. World wide web caching: Trends and techniques. IEEE
Communication Magazine on Internet Technology Series 38(5):178-185.

Cao, P. AND C. Liu. 1998. Strong cache consistency in the world wide web. IEEE Transactions
on Computers 47:445-457.

CARPENTER, T., R. CARTER, M. COCHINWALA, AND M. EIGER. 2001. Client-server caching with
expiration timestamps. Journal on Distributed and Parallel Database, Academic Publishers
10:5-22.

CHEN, D., A. MOK, AND M. NIXON. 1999. Real-time support in com. In Proceedings of the 32nd
Annual Hawaii International Conference on System Sciences 3:1-10.

CHILINGARYAN, S. AND W. EPPLER. 2005. High speed data exchange protocol for modern
distributed data acquisition systems based on opc xml-da. In Proceedings of the 14th
IEEE-NPSS Real Time Conference:352—356.

EPPLER, W., A. BEGLARIAN, S. CHILINGARIAN, S. KELLY, V. HARTMANN, AND H. GEMMEKE.
2004. New control system aspects for physical experiments. IEEE Transactions on Nuclear
Science 51(30):482-488.

FISCHER, P. 1998. Real-time extensions to opc. Real-Time Magazine-3Q98, 76-82. http://
www.omimo.be/Magazine/98q3/1998q3 p076.pdf.

FRANKLIN, M. 1996. Client data caching: A foundation for high performance object database
systems. The Kluwer International Series in Engineering and Computer Science 3.

FrRANKLIN, M. J., M. J. CAREY, AND M. LIvNY. 2006. Transactional client-server consistency:
Alternative and performance. ACM Transactions on Databases 22(3):315-363.

GOPALAN, P., H. KARLOFF, A. MEHTA, M. MIHAIL, AND N. VISHNOL 2002. Caching with expiration
times. In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms: 540—
547.

HoLLEY, D. W. 2004. Understanding and using opc for maintenance and reliability applications.
IEE Computing and Control Engineering:28-31.

ICONICSInc. 2008. http://www.iconics.com/.

IwaNITZ, F. AND J. LANGE. 2006. Opc: Fundamentals, implementation, and application. Huthig
Verlag Heidelberg, 3rd rev. Ed.

KacHAzcHi, H., J. HAYES, AND D. HEFFERNAN. 2007. Development of an opc server for a
fieldbus diagnosis tool. In Proceedings of 5th IEEE International Conference on Industrial
Informatics:329-334.

KEw, S. J. AND B. DWOLATZKY. 2001. Real-time performance of opc in a feedback system. 1-10.
http://www.cs.unisa.ac.za/saicsit2001/Electronic/paper45.pdf.

LINE, M. B., M. G. JAATUN, AND Z. B. CHEAH. 2008. Penetration testing of opc as part of process
control systems. In Proceedings of the 5th International Conference on Ubiguitous
Intelligent and Computing, LNCS 5061:271-283.

L, J,, K. W. LiM, W. K. Ho, K. C. TAN, A. TAy, AND R. SRINIVASAN. 2005. Using the opc
standard for real-time process monitoring and control. [EEE Software 22(6):54-59.

SoftwareToolbox. 2008. http://www.toolboxopc.com/.

TAN, V. V., D.8.Y00, AND M. J. Y1. 2006. Design and implementation of web service by using
opc xmi-da and opc complex data for automation and control systems. In Proceedings of
the 6th IEEE International Conference on Computer and Information Technology: 263.

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

New Control System Aspects for Supporting Complex Data and High Performance System 411

Technosoftware. 2008. http://www.technosoftware.com/ .

TENG, W. G., C. Y. CHANG, AND M. S. CHEN. 2005. Integrating web caching and web prefetching
in client-side proxies. IEEFE Transactions on Parallel and Distributed Systems 16(5):444-455.

TheAdvosollnc. 2008. http://www.advosol.us/c-3-client-components.aspx.

TheOPCFoundation. 2003. The opc complex data specification version 1.0. http://opcfoundation.org/
Downloads.aspx.

TheOPCFoundation. 2004. The opc data access specification version 3.0. http:/ /opcfoundation.org/
Downloads.aspx.
VERYHA, Y. 2005. Going beyond performance limitations of opc da implementation. In Proceedings
of the 10th IEEE Conference on Emerging Technology and Factory Automation 1:47-53.
WANG, S. Y., L. ZHONG, AND Y. L. CAO. 2006. A data synchronization mechanism for cache on
mobile client. In Proceedings of the International Conference on Wireless Communications,
Networking and Mobile Computing: 1-5.

YANG, Q. AND H. H. ZHANG. 2001. Integrating web prefectching and caching using prediction
models. World Wide Web 4(4):299-321.

Dae-Seung Yoo received the B.S. and M.S. degrees in Computer
Engineering and Information Technology from the University of Ulsan,
Republic of Korea, in 1998 and 2001, respectively. Now he is a guest
professor in the School of Computer Engineering and Information
Technology, University of Ulsan. He is a member of KIISE, KIPS, and
IEICE. His main interests are software engineering, software for
automation systems, and Internet technologies for industrial automation
systems.

Vu Van Tan was born in Haiduong province, Vietnam, in 1981. He
received the Eng. degree in Information Technology from the Hanoi
University of Technology, Vietnam, in 2004. He has worked as design and
analysis engineer in KhaiTri Software Company, Vietnam, for one year.
He is currently a Ph.D student at the School of Computer Engineering
and Information Technology, University of Ulsan, Republic of Korea. He
joined in the Applied Software Engineering Lab, University of Ulsan, in
2005. His main interests are software engineering, software for
automation systems, Internet technologies for industrial automation
systems, and real-time communication systems.

Myeong-Jae Yi received the B.S. degree in Computer Science from
the Seoul National University, Republic of Korea in 1987. He also
received the M.S. and Ph.D degrees in Computer Science from the Seoul
National University in 1989 and 1995, respectively. He was a part-time
lecturer at the Department of Computer Science of the Seoul National
University and the Sookmyung Women’s University from 1991 to 1996.
He is currently a professor in the School of Computer Engineering and
Information Technology, University of Ulsan, Republic of Korea.

Prof. Yi is also a vice-Director of NARC (Network based Automation
Research Center) at the University of Ulsan and is a member of KIISE
and KIPS. His main interests are software engineering, software for
automation systems, Internet technologies for industrial automation
systems, mobile agent, and E-commerce.

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008

