• Title/Summary/Keyword: Larch

Search Result 342, Processing Time 0.025 seconds

A Formal Specification and Verification of CORBA Standards

  • Kim, Mi-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3127-3137
    • /
    • 1998
  • COBRA 표준명세는 표준을 만족하는 구현에서 제공해야 할 기능뿐만 아니라 서비스 제공 모듈의 사용자 인터페이스도 IDL을 사용하여 엄격하게 정의하고 있다. CORBA 표준에 대한 확신과 신뢰성을 가지기 위해서는 IDL(Interface Definition Language)로 기술된 표준명세를 정형화하고 수학적으로 엄격히 증명할 필요가 있다. 본 논문에서는 CORBA 표준을 정형적으로 명세하고 검증할 방법을 제시한다. 먼저 표준모듈을 Larch/CORBA IDL(LCB)를 사용하여 정형적으로 명세하고, LCB의 의미론에 준하여 LCB 명세를 LSL(Larch Shared language)로 변환한다. 변환한 LCB 명세와 LSL 증명논리를 사용하여 특성을 수학적으로 증명한다. 변환기반의 LCB 의미론을 정립하여 제안한 방법의 이론적 바탕을 마련하고 CORBA 이름서비스명세에 실제 적용하여 그 효용성을 보인다.

  • PDF

Studies on the Morphological, Physical and Chemical Properties of the Korean Forest soil in Relation to the Growth of Korean White Pine and Japanese Larch (한국산림토양의 형태학적 및 이화학적성질과 낙엽송, 잣나무의 성장(成長)에 관한 연구(硏究))

  • Chung, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.189-213
    • /
    • 1980
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in accordance with multi-variate analysis. 2. Test species, larch and the Korean white pine, are plantable in extensive areas from mid to north in the temperate zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are not known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth. But, when larch is planted in the Korean white pine site it can be hardly said that the larch growth is good. To understand on such a difference soil factors have been studied so as to see how the soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 larch plots and 259 white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analysis of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/chemical properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of deposit form, soil depth, soil moisture, altitude, relief, soil type, depth of A-horizon, soil consistency content of organic matter soil texture bed rock gravel content aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency bed rock aspect depth of A-horizon soil moisture altitude relief deposit form soil depth soil texture gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of base saturation organic matter CaO C/N ratio, effective $P_2O_5$ PH.exchangeable $K_2O$ T-N MgO C E C Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$ Total Base T-N Na C/N ratio PH CaO base saturation organic matter exchangeable $K_2O$ C E C and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of soil depth deposit form soil moisture PH relief soil type altitude T-N soil consistency effective $P_2O_5$ soil texture depth of A-horizon Total Base exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type soil consistency aspect effective $P_2O_5$ depth of A-horizon exchangeable $K_2O$ soil moisture Total Base altitude soil depth base saturation relief T-N C/N ratio and deposit from. 7. In the multiple regression of forest soil's physical properties larch's correlation coefficient is 0.9272 and for the Korean white pine it is 0.8996. With chemical properties larch has 0.7474 and the Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properties are not less important than the physical properties. In the multiple regression of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for the Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients larch needs deeper soil depth than the Korean white pine and in the deposit form colluvial and creeping soils are demanded by the larch. Adequately moist to too moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief soil moisture PH N altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variation as plantation environments. For larch siting soil depth deposit form relief soil moisture PH soil type N and soil texture are indicators of good growth and for Korean white pine they are soil type soil consistency effective $P_2O_5$ and exchangeable $K_2O$, which is demanded more by the Korean white pine than larch generally. 9. Physical properties of soil has been known as affecting tree growth to greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for larch and the Korean white pine that have been uncertain So far could be clarified.

  • PDF

A Study on Sawing and Utilization Structure of Lumber from Small - diameter Logs of Larix leptolepis (낙엽송 소경재(小徑材)의 제재이용구조(製材利用構造)에 관(關)한 연구(硏究))

  • Lee, Choon-Taek;Kim, Su-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.53-68
    • /
    • 1990
  • This research has been executed for maximization of lumber yield and more efficient use of small diameter logs. Sample logs from thinnings carne from densed artificial stands at the Kwangnung Experimental Forests situated in the central region of Korean peninsula. Species of sample logs were obtained to execute sawing and strength test for larch, and lumber strength test in full size for pitch pine and Korean pine. A survey on sawmills consuming domestic logs was carried out to know sawmill production, costs and utilization structure of lumber as a guide to business analysis. Results showed that sawing pattern from small logs less than 15cm in diameter was necessary to cut 9cm by 9cm square per one log in order to obtain high lumber recovery and provide for wide market needs. The total lumber yield of squares plus side boards was 56 percent to 58 percent from small logs and the yield for log sweep in 30 percent decreased by 24.5 percent in sawing production, compared to yield for straight logs. In sawing efficiency, production of lumber by twin band saw could be improved 238 percent higher than lumber of the same species produced by conventional sawmilling methods, and sawing accuracy with twin band saw was much higher at the lumber production than band saw. Lumber from the small larch logs has shown 70 knots per $m^2$ on its faces and also lumber showed lots of face checkings by air drying on the yard, compared to other species. MOR in bending of lumber in full size from small logs of larch was found ranging from 380kg/$cm^2$ to 460kg/$cm^2$, resulting in 40 percent less than the strength from clear small specimens. In lumber containing knots, cross grain, etc, longitudinal stress wave speed was delayed about 48 percent by defects in lumber from both larch and pitch pine logs. The surveyed sample sawmills consumed the domestic logs at the rate of 54 percent to 84 percent in the total timber consumption, showing high consumption at mills located in the mountains.

  • PDF

Fixation characteristics of CCA and CCFZ in Japanese Red Pine, Japanese Larch, and Ezo Spruce Sapwood (소나무, 낙엽송, 북양가문비나무 변재부에서 CCA와 CCFZ의 정착특성)

  • Kim, Gyu-Hyeok;Kim, Hyung-Jun;Kim, Jae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.52-59
    • /
    • 2001
  • The fixation characteristics of CCA and CCFZ in Japanese red pine, Japanese larch, and ezo spruce sapwood were compared at various temperatures and fixation conditions (drying and nondrying fixation). Fixation was monitored by the rates of reduction of hexavalent chromium to trivalent one, and optimal fixation time was estimated based on the results. The rate of fixation was highly temperature dependent, and the fixation rate of treated wood conditioned under nondrying conditions was much more faster than that under drying conditions, especially when the moisture content of treated wood was below fiber saturation point. Preservative types affected fixation; CCA-Type B had the highest fixation rate, followed by CCA-Type C and then CCFZ. The differences in fixation rates of preservative components were also observed among wood species; Japanese red pine fixed the fastest, followed by Japanese larch and then ezo spruce. Time required to complete fixation according to the fixation temperature could be predicted successfully using the regression equations between the temperatures and fixation time, regardless of conditioning methods, preservative types, and wood species.

  • PDF

Nail Shear Performance of Structural Members with OSB (오에스비에 대한 각종 부재의 못전단성능)

  • Hwang, Kweonhwan;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.66-76
    • /
    • 2008
  • Recently, demands for the structural uses with domestic Japanese larch and SPF(spruce-pine-fir) lumber from North America have been increased. Shear properties of nailed joints that are the most simple and optimum fastening method in wooden constructions, especially in light frame construction. For the nailed joints, in North America and Japan, a number of basic and practical studies have been performed. The shear behaviors for the double nailed joint with variations of member and its direction, were examined. Shear properties of the shear specimens with SPF stud showed more remarkable variation than larch glulam and larch stud. Furthermore, the relationships between slip modulus and strength are not coincided in every case.

Feasibility of Manufacturing Desk and Chair with Curved Veneer Lamination (단판 적층성형 학생용 책상.의자의 제조적성)

  • Suh, Jin-Suk;Park, Jong-Young;Han, Ki-Man
    • Journal of the Korea Furniture Society
    • /
    • v.16 no.2 s.30
    • /
    • pp.59-65
    • /
    • 2005
  • As physical condition of students improves, there is a need to develop human body-friendly desk and chair for students. In this study, desks and chairs were manufactured with curved veneer lamination under high frequency heating and pressing, using ten wood species such as Japanese red pine, Korean pine, pitch pine, Japanese larch, yellow poplar, black locust, oak, radiata pine, beech, and birch. The performance of these products were evaluated. The results obtained were summarized as follows; With high frequency heating, the turned lamination of veneers with full size sheet ($3{\times}6\;feet$) prepared by rotary lathe peeling was successfully applied for making the members of desk top, leg frames of desk and chair. Bending strengths of desk tops were relatively greater for yellow poplar, black locust and red pine, which were similar to those of beech and birch. Bending strengths of desk legs were classified into greater species group (red pine, yellow poplar, larch) and lower species group (radiata pine, Korean pine, pitch pine). Compressive strengths of chair legs in parallel direction to the lamination were greater in black locust and larch. On the other hand, differences between outer and inner gap at the top and drawer bottom of desk top were rather larger for the laminations of birch and beech, and less for those of yellow poplar and pitch pine, showing greater stability of open drawer space. In results, yellow poplar, larch, pitch pine and red pine showed good appearance and strength properties at the curved veneer lamination. Accordingly, it was believed that these domestic woods were able to substitute for birch which was being imported for the use of veneer-laminates type furniture.

  • PDF

Catalytic Upgrading of Bio-oil Produced from Japanese Larch over MCM-41 (MCM-41 촉매 상에서 일본 낙엽송으로부터 생성된 바이오 오일의 접촉 개질 반응)

  • Park, Hyun Ju;Jeon, Jong-Ki;Jung, Kyeong Youl;Ko, Young Soo;Sohn, Jung Min;Park, Young-Kwon
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.340-344
    • /
    • 2007
  • Catalytic upgrading of pyrolytic bio-oil produced from Japanes Larch was carried out over MCM-41 catalyst. Oil with enhanced stability was produced by the MCM-41 catalyst due to transform oxygen known as a main cause for the instability of bio-oil into $H_2O$, CO and $CO_2$. In addition, the MCM-41 catalyst produced the larger amount of phenolic compounds in the pyrolytic bio-oil product compared with that in the bio-oil produced without catalyst. Especially, the catalytic activity of Al-MCM-41 for the bio-oil upgrading was higher than that of Si-MCM-41 because Al-MCM-41 has the larger amount of acid sites. Also, the better reforming result was obtained when pyrolytic bio-oil vapor passed through catalytic layer rather than Japanese Larch was mixed with catalyst directly.

Study on Durability of Wood Deck according to Species (수종별 목재 데크재의 내구성에 관한 연구)

  • Kim, Kyoung Jung;Lee, Won Jae;Choi, Chul;Kim, Hee Jin;Kang, Seog Goo
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.2
    • /
    • pp.111-117
    • /
    • 2017
  • Recently, as people's interest in wood has increased, the use of wood as household and landscape decking materials has increased. As the deck material, imported wood such as synthetic wood, Ipe, and Malas was used in addition to the existing preserved wood, but recently deck use has been activated as part of the activation of domestic materials. As an important quality factor in the selection of such decking materials, various durability along with weatherability for long - term use is required for maintenance. Generally used tropical hardwoods have excellent weatherability and durability without additional preservative treatment. However, the domestic larch is a wood species with a higher specific gravity and durability than ordinary conifers. However, it has not yet been used as a deck material due to lack of comparative studies on its characteristics. Therefore, hardness and durability of wood were measured using six specimens of Ipe, Massaranduba, Malas, Douglas-fir, Larch and Torrefied-Larch. Density Profile was used to measure the density, and Brinell hardness test and resistance test against momentary impact were carried out for the test of resistance to static load. Also, The hardness and durability of wood were measured by castor test with resistance test against dynamic load, as well as, nail down test by experiment on surface hardness and durability. As a result of the experiment, the hardness was increased in proportion to the density, and it was confirmed that the imported lumber was harder and durable than the domestic larch.

Analysis of the Effect of Tree Roots on Soil Reinforcement Considering Its Spatial Distribution (뿌리의 공간분포를 고려한 수목 뿌리의 토양보강 효과에 대한 분석)

  • Kim, Dongyeob;Lee, Sang Ho;Im, Sangjun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.4
    • /
    • pp.41-54
    • /
    • 2011
  • Tree roots can enhance soil shear strength and slope stability. However, there has been a limited study about root reinforcement of major tree species in Korea because of some experimental difficulties. Thus, this study was conducted to analyze the performance of Japanese larch (Larix kaempferi) and Korean pine (Pinus koraiensis) which are two common plantation species in Korea. Profile wall method was used to measure the spatial distribution of root system and its diameter within 15 soil walls of Japanese larch stand and 13 soil walls of Korean pine stand in Taehwa University Forest, Seoul National University, Korea. Root tensile properties of each species were assessed in the laboratory, and root reinforcements were estimated by Wu model. The study observed that the number and cross-sectional area (CSA) of root in both species could tend to decrease with soil depth. Especially, CSA were well-fitted to exponential functions of soil depth. Mean root area ratios (RAR) were 0.03% and 0.10% for Japanese larch and Korean pine, respectively. Estimated root reinforcement from Wu model were, on the average, 4.04 kPa for Japanese larch and 12.26 kPa for Korean pine. Overall, it was concluded that root reinforcement increased the factor of safety (Fs) of slope for small-scale landslide as the result of two-dimensional (2-D) infinite slope stability analysis considering vegetation effects.

Effects of Drying Temperature on Internal Temperature, Drying Rate and Drying Defects for Japanese Larch in High-Temperature Drying (일본잎갈나무 정각재(正角材)의 고온건조(高溫乾燥) 온도(溫度)가 내부온도(內部溫度), 건조속도(乾燥速度) 및 건조결함(乾燥缺陷)에 미치는 영향(影響))

  • Lee, June-Ho;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.99-107
    • /
    • 1997
  • This study was executed to test the possibility of replacement for domestic Japanese larch(Larix leptolepis) for hardwoods and to acquire the information about the effects of drying temperature on internal temperature, moisture content and drying defects. In high-temperature drying, internal temperature increased rapidly to boiling point, immediately after that point the internal temperature rising rate was reduced. In the case of drying at temperature of $125^{\circ}C$, internal temperature could reach at boiling point in a very short time. Moisture content in high-temperature drying showed constant drying rate period and first period of falling rate drying together in 4 hours since experiment begun. There was no strong correlation between initial moisture content and final moisture content. Average drying rate at $115^{\circ}C$, $120^{\circ}C$ and $125^{\circ}C$ was 1.42%/hr, 1.88%/hr and 2.02%/hr, respectively; the case of drying temperature of $125^{\circ}C$ showed most rapid drying rate. Drying rate of $125^{\circ}C$ was so rapid that it showed more severe shrinkage, bow, collapse, end check, and internal check development than in other drying conditions. The result of this study showed the strong possibility of high-temperature drying for Japanese larch, and to dry Japanese larch optimally, dry bulb temperature should not exceed $120^{\circ}C$.

  • PDF