DOI QR코드

DOI QR Code

Analysis of the Effect of Tree Roots on Soil Reinforcement Considering Its Spatial Distribution

뿌리의 공간분포를 고려한 수목 뿌리의 토양보강 효과에 대한 분석

  • Kim, Dongyeob (Department of Forest Sciences, Seoul National University) ;
  • Lee, Sang Ho (Department of Forest Sciences, Seoul National University) ;
  • Im, Sangjun (Department of Forest Sciences, Seoul National University)
  • Received : 2011.05.27
  • Accepted : 2011.08.08
  • Published : 2011.08.30

Abstract

Tree roots can enhance soil shear strength and slope stability. However, there has been a limited study about root reinforcement of major tree species in Korea because of some experimental difficulties. Thus, this study was conducted to analyze the performance of Japanese larch (Larix kaempferi) and Korean pine (Pinus koraiensis) which are two common plantation species in Korea. Profile wall method was used to measure the spatial distribution of root system and its diameter within 15 soil walls of Japanese larch stand and 13 soil walls of Korean pine stand in Taehwa University Forest, Seoul National University, Korea. Root tensile properties of each species were assessed in the laboratory, and root reinforcements were estimated by Wu model. The study observed that the number and cross-sectional area (CSA) of root in both species could tend to decrease with soil depth. Especially, CSA were well-fitted to exponential functions of soil depth. Mean root area ratios (RAR) were 0.03% and 0.10% for Japanese larch and Korean pine, respectively. Estimated root reinforcement from Wu model were, on the average, 4.04 kPa for Japanese larch and 12.26 kPa for Korean pine. Overall, it was concluded that root reinforcement increased the factor of safety (Fs) of slope for small-scale landslide as the result of two-dimensional (2-D) infinite slope stability analysis considering vegetation effects.

Keywords

References

  1. 마호섭.정원옥. 2007. 우리나라 국립공원지역의 산사태 발생특성 분석. 한국임학회지 96 (6):611-619.
  2. 박종민.마호섭.강원석.오경원.박성학.이성재. 2010. 전라북도 지역의 산사태발생 특성분석. 경상대학교 농업생명과학연구 44 (4):9-20.
  3. 서울대학교 태화산학술림. 2009. 태화산학술림 현황. 서울대학교 태화산학술림 내부보고문서.
  4. 이상희. 2005. GIS를 이용한 천층산사태 발생 예측을 위한 수문물리모형의 적용. 충북대학교 대학원 박사학위논문.
  5. 이인모.성상규.임충모. 1991. 뿌리의 강도가 자연사면 안정에 미치는 영향에 관한 실험연구. 대한토질공학회지 7(2):51-66.
  6. 이창우. 2004. 대나무(대체근계)의 토질강도보강효과에 대한 실험적 연구. -토양수분제어하의 단순전단시험에 의한 해석-. 한국환경복원녹화기술학회지 7(2):46-51.
  7. 이창우.윤호중.정용호. 2006. Nylon Net(대체근계)의 토질강도보강효과에 대한 실험적 연구. -토양수분제어하의 단순전단시험에 의한 해석-. 한국환경복원녹화기술학회지 9(3):76-81.
  8. 조주형.안봉원. 1998. 식생뿌리에 의한 비탈면 안정과 보강에 관한 실험적 연구. 한국환경복원녹화기술학회 1(1):54-62.
  9. 조주형.이종성. 2000. 식생뿌리의 전단강도 보강에 의한 사면안전율 해석. -잣나무 뿌리를 중심으로-. 한국조경학회지 27(5):80-93.
  10. 지병윤.오재헌.최병구.전근우.차두송. 2004. 수목의 근계구성에 따른 사면의 붕괴방지효과에 관한 연구(4). -잣나무 뿌리의 인장특성-. 한국임학회지 93(1):103-107.
  11. 차두송.지병윤. 2003. 수목의 근계구성에 따른 사면의 붕괴방지효과에 관한 연구(2). -잣나무 뿌리의 공간분포-. 한국임학회지 92(1):33-41.
  12. 차두송.오재헌. 2005. 일면전단실험에 의한 수목뿌리의 토양보강효과 평가. 한국임학회지 94(4):281-286.
  13. 차두송.오재헌.이정수. 2008. 산불피해지에 있어서 소나무 뿌리의 인장강도특성 변화. 한국임학회지 97(4):392-397.
  14. 차두송.오재헌.지병윤.전근우. 2002. 수목의 근계구성에 따른 사면의 붕괴방지효과에 관한 연구(1). -소나무 뿌리의 공간분포과 물리적 특성-. 한국임학회지 91(1):71-78.
  15. Abdi, E., Majnounian, B., Genet, M., and H. Rahimi. 2010. Quantifying the effects of root reinforcement of Persian Ironwood (Parrotia persica) on slope stability; a case study:hillslope of Hyrcanian forests, northern Iran. Ecological Engineering 36(10):1409-1416. https://doi.org/10.1016/j.ecoleng.2010.06.020
  16. Abe, K., and R. R. Ziemer. 1991. Effect of tree roots on a shear zone:Modeling reinforced shear stress. Canadian Journal of Forest Research 21:1012-1019. https://doi.org/10.1139/x91-139
  17. Abernethy, B., and I. D. Rutherfurd. 2001. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrological Process 15:63-79. https://doi.org/10.1002/hyp.152
  18. Achat, D. L., Bakker, M. R., and P. Trichet. 2008. Rooting patterns and fine root biomass of Pinus pinaster assessed by trench wall and core methods. Journal of Forest Research 13:165-175. https://doi.org/10.1007/s10310-008-0071-y
  19. Bathurst, J. C., Moretti, G., El-Hames, A., Begueria, S., and J. M. Garcia-Ruiz. 2007. Modelling the impact of forest loss on shallow land- slide sediment yield, Ijuez river catchment, Spanish Pyrenees. Hydrology and Earth System Sciences 11(1):569-583. https://doi.org/10.5194/hess-11-569-2007
  20. Bischetti, G. B., Chiaradia, E. A., Epis, T., and E. Morlotti. 2009. Root cohesion of forest species in the Italian Alps. Plant and Soil 324:71-89. https://doi.org/10.1007/s11104-009-9941-0
  21. Bischetti, G. B., Chiaradia, E. A., Simonato, T., Speziali, B., Vitali, B., Vullo, P., and A. Zocco. 2005. Root strength and root area ratio of forest species in Lombardy (northern Italy). Plant and Soil 278:11-22. https://doi.org/10.1007/s11104-005-0605-4
  22. Bohm, W. 1979. Methods of Studying Root System. Berlin:Springer-Verlag.
  23. Casadei, M., Dietrich, W. E., and N. L. Miller. 2003. Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surface Processes and Landforms 28:925- 950. https://doi.org/10.1002/esp.470
  24. De Baets, S., Poesen, J., Reubens, B., Wemans, K., De Baerdemaeker, J., and B. Muys. 2008. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant and Soil 305:207-226. https://doi.org/10.1007/s11104-008-9553-0
  25. Gray, D. H., and H. Ohashi. 1983. Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering 109(3):335-353. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(335)
  26. Gray, D. H., and R. B. Sotir. 1996. Biotechnical and Soil Bioengineering Slope Stabilization:A Practical Guide for Erosion Control. New York:John Wiley & Sons.
  27. Kokutse, N., Fourcaud, T., Kokou, K., Neglo, K., and P. Lac. 2006. 3D numerical modelling and analysis of the influence of forest structure on hill slopes stability. Proceedings of the INTERPRAEVENT International Symposium Disaster Mitigation of Debris Flows, Slope Failures and Landslides. Nigata, Japan:Japan Society of Erosion Control Engineering. pp. 561-567.
  28. Kim, D., Im, S., Lee, S. H., and Y. Hong. 2010a. Assessing root reinforcements on soils by Larix kaempferi and Pinus koraiensis using two different root reinforcement model. Inter- national Forestry Review 12(5):162.
  29. Kim, D., Lee, S. H., Combalicer, E. A., Hong, Y., and S. Im. 2010b. Estimating soil reinforce- ment by tree roots using the perpendicular root reinforcement model. International Journal of Erosion Control Engineering 3(1):80- 84.
  30. Maher, M. H., and D. H. Gray. 1990. Static response of sands reinforced with randomly disturbed fibers. Journal of Geotechnical Engineering 116(11):1661-1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661)
  31. Mattia, C., Bischetti, G. B., and F. Gentile. 2005. Biotechnical characteristics of root systems of typical Mediterranean species. Plant and Soil 278:23-32. https://doi.org/10.1007/s11104-005-7930-5
  32. Nilaweera, N. S. 1994. Effects of tree roots on slope stability:the case of Khao Luang mountain area, southern Thailand. Ph.D. dissertation, Asian Institute of Technology, Thailand.
  33. Norris, J. E., Greenwood, J. R., Achim, A., Gardiner, B. A., Nicoll, B. C., Cammeraat, E., and S. B. Mickovski. 2008. Hazard assess- ment of vegetated slopes (In Norris, J. E., Stokes, A., Mickovski, S. B., Cammeraat, E., Van Beek, R., Nicoll, B. C., and A. Achim eds., "Slope Stability and Erosion Control:Ecotechnological Solutions"). Netherlands:Springer. pp. 119-166.
  34. Pollen, N., and A. Simon. 2005. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resources Research 41, W07025, doi:10.1029/2004WR003801.
  35. Preti, F., Dania, A., and F. Laio. 2010. Root profile assessment by means of hydrological, pedological and above-ground vegetation information for bio-engineering purposes. Ecological Engineering 36:305-316. https://doi.org/10.1016/j.ecoleng.2009.07.010
  36. Reubens, B., Poesen, J., Danjon, F., Geudens, G., and B. Muys. 2007. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root sys- tem architecture:a review. Trees 21(4):385-402. https://doi.org/10.1007/s00468-007-0132-4
  37. Roering, J. J., Schmidt, K. M., Stock, J. D., Dietrich, W. E., and D. R. Montgomery. 2003. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Canadian Geotechnical Journal 40(2):237-253. https://doi.org/10.1139/t02-113
  38. Schmid, I., and M. Kazda. 2005. Clustered root distribution in mature stands of Fagus sylvatica and Picea abies. Oecologia 144(1):25-31. https://doi.org/10.1007/s00442-005-0036-1
  39. Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R., and T. Schaub. 2001. The variability of root cohesion as an influence on shallow landslide suscep- tibility in the Oregon Coast Range. Canadian Geotechnical Journal 38:995-1024. https://doi.org/10.1139/t01-031
  40. Schwarz, M., Preti, F., Giadrossich, F., Lehmann, P., and D. Or. 2010. Quantifying the role of vegetation in slope stability:A case study in Tuscany (Italy). Ecological Engineering 36(3):285-291. https://doi.org/10.1016/j.ecoleng.2009.06.014
  41. Shewbridge, S. E., and N. Sitar. 1990. Deformation- based model for reinforced sand. Journal of Geotechnical Engineering 116(7):1153-1170.
  42. Stokes, A., Norris, J. E., Van Beek, L. P. H., Bogaard, T., Cammeraat, E., Mickovski, S. B., Jenner, A., Di Iorio, A., and T. Fourcaud. 2008. How vegetation reinforces soil on slopes (In Norris, J. E., Stokes, A., Mickovski, S. B., Cammeraat, E., Van Beek, R., Nicoll, B. C., and A. Achim eds., "Slope Stability and Erosion Control:Ecotechnological Solutions"). Netherlands:Springer. pp. 65-118.
  43. Tosi, M. 2007. Root tensile strength relationships and their slope stability implications of three shrub species in the northern Apennines (Italy). Geomorphology 87:268-283. https://doi.org/10.1016/j.geomorph.2006.09.019
  44. Van de Wiel, M. J., and S. E. Darby. 2007. A new model to analyse the impact of woody riparian vegetation on the geotechnical sta- bility of riverbanks. Earth Surface Processes and Landforms 32(14):2185-2198. https://doi.org/10.1002/esp.1522
  45. Van Noordwijk, M., Brouwer, G., Meijboom, F., Do Rosario G. Oliveira, M., and A. G. Bengough. 2000. Trench profile techniques and core break methods (In Smit, A. L., Bengough, A. G., Engels, C., Van Noordwijk, M., Pellerin, S., and S. C. Van de Geijn eds., "Root Methods:A Handbook"). Berlin:Springer-Verlag. pp. 211-271.
  46. Waldron, L. J. 1977. The shear resistance of root- permeated homogeneous and stratified soil. Soil Science Society of America Journal 41 (5):843-849. https://doi.org/10.2136/sssaj1977.03615995004100050005x
  47. Wu, T. H. 2007. Root reinforcement:Analysis and experiments (In Stokes, A., Spanos, I., Norris, J. E., and E. Cammeraat. eds., "Eco- and Ground Bio-Engineering:The Use of Vegetation to Improve Slope Stability"). Netherlands:Springer. pp. 13-20.
  48. Wu, T. H., McKinnell III, W. P., and D. N. Swanston. 1979. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal 16:19-33. https://doi.org/10.1139/t79-003
  49. Ziemer, R. R., and D. N. Swanston. 1977. Root strength changes after logging in southeast Alaska. U.S. Dept. Agric., Forest Service, Research Note PNW-306, Portland, Oregon.

Cited by

  1. 경주국립공원 탐방로의 훼손실태 분석 - 토함산, 남산, 단석산, 구미산 지구를 중심으로 - vol.41, pp.3, 2013, https://doi.org/10.9715/kila.2013.41.3.031
  2. 아파트 단지 지하주차장 상부에 식재된 교목의 생장 특성에 관한 연구 vol.24, pp.1, 2021, https://doi.org/10.13087/kosert.2021.24.1.111