• Title/Summary/Keyword: Langmuir probe method

Search Result 39, Processing Time 0.024 seconds

A study on fast langmuir probe driving circuit for measurement of plasma parameter and its application (플라즈마 파라메타 측정용 고속 langmuir프로브 구동회로 실현 및 적용)

  • 신중흥;고태언;김두환;박정후
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.506-511
    • /
    • 1996
  • This paper deals with an inexpensive, simple and fast Langmuir probe sweeping circuit and its application. This sweeper completes a probe trace in a 1 ms order. Futhermore, the circuit drives a maximum probe voltage of $\pm$30V and has a maximum probe current capability of a few amperes. The plasma parameters are successfully determined using the fast Langmuir probe method.

  • PDF

Electron Density Measurement of Inductively Coupled Plasma Using Langmuir Probe (Langmuir Probe를 이용한 유도결합형 플라즈마의 전자 밀도 측정)

  • Lee, Young-Hwan;Jo, Ju-Ung;Kim, Kwang-Soo;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1111-1114
    • /
    • 2003
  • In this paper, electrical characteristics of inductively coupled plasma in an electrodeless fluorescent lamp were investigated using a Langmuir probe with a variation of argon gas pressure. The RF output was applied in the range of $5{\sim}50W$ at 13.56MHz. The internal plasma voltage of the chamber and the probe current were measured while varying the supply voltage to the Langmuir probe in the range of $-100V{\sim}+100V$. When the pressure of argon gas was increased, electric current was decreased. There was a significant electric current increase from l0W to 30W. Also, when the RF power was increased, electron density was increase. This implies that this method can be used to find an optimal RF power for efficient light illumination in an electrodeless fluorescent lamp.

  • PDF

Plasma Diagnostics with Digital Langmuir Probe (디지탈 Langmuir Probe에 의한 플라즈마 진단)

  • Yeon, C.K.;Whang, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.145-148
    • /
    • 1989
  • Plasma diagnostics using Langmuir Probe is of wide application because of its simplicity in measurement of electron temperatures and densities. Current methods using simple circuit and analog meters, however, have troubles when they are applied to time-varying or thermal plasmas. To overcome these problems and expand the area of applicability, we have designed fast electronic voltage sweeping circuit in which we can detect digital data. Diagnostics using our digital Langmuir Probe is performed in various kinds of plasmas and the results are shown. Our method can be applied to measuring electron temperature and density of high temperature or time-varying plasmas. And we expect further knowledge of each state of plasma.

  • PDF

Simulation of a Langmuir Probe in an ECR Reactor (ECR Reactor 내의 Langmuir Probe 시뮬레이션)

  • Kim, Hoon;Porteous, Robert K.;Boswell, Rod W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1609-1611
    • /
    • 1994
  • In ECR and helicon reactors for plasma processing, a high density plasma is generated in a source region which is connected to a diffusion region where the processing takes place. Large density and potential gradients can develop at the orifice of the source which drive ion currents into the diffusion region. The average ion velocity may become the order of the sound velocity. Measurements of the ion saturation current to a Langmuir probe are used as a standard method of determining the plasma density in laboratory discharges. However, the analysis becomes difficult in a steaming plasma. We have used the HAMLET plasma simulator to simulate the ion flow to a large langmuir probe in an ECR plasma. The collection surface was aligned with the Held upstream, normal to the field, and downstream. ion trajectories through the electric and magnetic fields were calculated including ion-neutral collisions. We examines the ratio of ion current density to plasma density as a function of magnetic field and pressure.

  • PDF

P018 Comparison between Cutoff Probe and Langmuir Probe: Focused on Measurement Technique Error

  • Gwon, Jun-Hyeok;Kim, Dae-Ung;Yu, Sin-Jae;Sin, Yong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.235.1-235.1
    • /
    • 2014
  • Precise measurement of plasma parameters including density and temperature is the most essential part for understanding plasma characteristics. To persue more accurate measurement, it is very important to understand the intrinsic error of the measurement method. In this paper, we performed the plasma measurement with different method; langmuire probe and cutoff probe. Both measurement technology are known to be exactly correlate with etch other. We conducted the four set of same experiments process by diffrent persons to observe the intrinsic error based on measurement tools. As a result, the cutoff probe is relatively reliable then the Langmuir probe. This difference is analyzed to be intrinsic since it cames from the inevitable error such as manufacturing of probe tip. From this study, we sure that it is good decision to choose cutoff probe as repeatable measurement independent with intrinsic human factor.

  • PDF

A Study on Emission Characteristics of Ne Gas Using a Single Langmuir Probe Method in Radio-Frequency Inductively Coupled Plasma (13.56MHz ICP에서 단일 탐침법에 의한 Ne 가스의 발광특성 연구)

  • Jo, Ju-Ung;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.150-152
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. The electrodeless fluorescent lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, electron temperature and electron density were measured in a radio-frequency inductively coupled plasma using a Langmuir probe method for emission characteristics. Measurement was conducted in an Ne discharge for pressure from 10 [mTorr] and input RF power 100 [W] to 150 [W]. As for the electron density, a electron temperature was more distinguished for a emission characteristic. The results of ideal may contribute to systematic understanding of a electrodeless fluorescent lamps of emission characteristics.

  • PDF

Measurement of Inductively Coupled Plasma Using Langmuir Probe (Langmuir Probe를 이용한 유도결합형 플라즈마의 측정)

  • Lee, Y.H.;Jo, J.U.;Kim, K.S.;Choi, Y.S.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1719-1721
    • /
    • 2003
  • In this paper, electrical characteristics of inductively coupled plasma in an electrodeless fluorescent lamp were investigated using a Langmuir probe with a variation of Ar gas pressure. The RF output was applied in the range of 5-50W at 13.56MHz. The internal plasma voltage of the chamber and the probe current were measured while varying the supply voltage to the Langmuir probe in the range of -100V ${\sim}$ +100V. When the pressure of Ar gas was increased, electric current was decreased. There was a significant electric current increase when the applied RF power was increased from 10 W to 30 W. This implies that this method can be used to find an optimal RF power for efficient light illumination in an electrodeless fluorescent lamp.

  • PDF

Electron Density Measurement of Inductively Coupled Plasma by Ar Gas Pressure (Ar 가스 압력에 따른 유도결합형 플라즈마의 전자 밀도 측정)

  • 이영환;김광수;조주웅;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.508-511
    • /
    • 2003
  • In this paper, electrical characteristics of inductively coupled plasma in an electrodeless fluorescent lamp were investigated using a Langmuir probe with a variation of argon gas pressure. The RF output was applied in the range of 5 ∼ 50 (W) at 13.56 (MHz). The internal plasma voltage of the chamber and the probe current were measured while varying the supply voltage to the Langmuir probe in the range of -100 (V) ∼+100 (V). When the pressure of argon gas was increased, electric current was decreased. There was a significant electric current increase from l0W to 30 〔W〕. Also, when the RF power was increased, electron density was increase. This implies that this method can be used to find an optimal RF rower for efficient light illumination in an electrodeless fluorescent lamp.

A Study on Emission Characteristics of Ar, Ne Gas Using a Single Langmuir Probe Method in Radio-Frequency Inductively Coupled Plasma (13.56MHz ICP에서 단일 탐침법에 의한 Ar, Ne 가스의 발광특성 연구)

  • Jo, Ju-Ung;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.167-170
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. The electrodeless fluorescent lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, electron temperature and electron density were measured in a radio-frequency inductively coupled plasma using a Langmuir probe method for emission characteristics. Measurement was conducted in an Argon, Ne discharge for pressure from 1 [mTorr] and input RF power 10 [W] to 150 [W]. As for the electron density, a electron temperature was more distinguished for a emission characteristic. The results of ideal may contribute to systematic understanding of a electrodeless fluorescent lamps of emission characteristics.

  • PDF

An Indirect Method to Monitor Plasma Status in a Transformer Coupled Plasma

  • Yu, Dae-Ho;An, Seung-Gyu;Kim, Ji-Hun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.216-216
    • /
    • 2011
  • There have been various direct or indirect methods to measure the characteristics of plasma. Comparing to direct method like Langmuir probe method, indirect measurements which give information as some external parameters like current, voltage, or phase are easier to obtain. In this research, an indirect method to measure averaged plasma density in a transformer coupled plasma(TCP) has been proposed and evaluated. With a simple analytic model connecting electrical characteristics to plasma impedance, direct measurement via double Langmuir probe has been performed. This result may play a meaningful role to diagnose TCP or similar plasma sources

  • PDF