• Title/Summary/Keyword: Langmuir films

Search Result 367, Processing Time 0.032 seconds

On The Etching Mechanism of $ZrO_2$ Thin Films in Inductively Coupled $BCl_3$/Ar Plasma

  • Kim, Man-Su;Jung, Hee-Sung;Min, Nam-Ki;Lee, Hyun-Woo;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.83-84
    • /
    • 2007
  • $BCl_3$/Ar ICP 플라즈마를 이용한 $ZrO_2$ 박막의 식각 메카니즘이 실험 결과와 모델링을 통해 연구되었다. Ar 가스의 증가에 따라, $ZrO_2$의 식각 속도는 선형 변화의 경향을 보이지 않았고, Ar의 약 30% - 35%에서 41.4nm/min의 최대의 속도를 나타내었다. Langmuir probe 측정과 plasma 모델링 결과로부터, $BCl_3$/Ar 가스 혼합비가 플라즈마 파라미터와 active species의 형성에 큰 영향을 미침을 확인하였다. 한편 surface kinetics 모델링 결과로부터, $ZrO_2$의 식각 속도는 ion-assisted chemical reaction mechanism 에 의해 결정됨을 확인하였다.

  • PDF

Current Properties Of Photoisomerization Organic Monolayer (광학이성 유기단분자막 전류특성)

  • 김동관;강용철;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.487-490
    • /
    • 1999
  • The Maxwell displacement current was generated from 4-octyl-4'-(5-carboxyl-pentamethyleneoxy)- azobenzene (denoted as 8A5H) monolayer Langmuir-Blodgett films prepared on Cr/Au-coated glass substrates due to trans-cis photoisomerization of 8A5H by application of alternate irradiation with UV light and Visible light. The displacement current was generated due to the trans-to-CIS photoisomerization by irradiation with ultraviolet light($\lambda_1$=360nm). Whereas the displacement current was generated in the opposite direction due to the cis-to-trans photoisomerization by photoirradiation with visible light($\lambda_2$=450nm). Finally, We concluded that Displacement current change according to power capacity photoirradiation, the more higher generate the more higher power capacity magnitude.

  • PDF

Synthesis of SiNx:H films in PECVD using RF/UHF hybrid sources

  • Shin, K.S.;Sahu, B.B.;Lee, J.S.;Hori, M.;Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.136.1-136.1
    • /
    • 2015
  • In the present study, UHF (320 MHz) in combination with RF (13.56 MHz) plasmas was used for the synthesis of hydrogenated silicon nitride (SiNx:H) films by PECVD process at low temperature. RF/UHF hybrid plasmas were maintained at a fixed pressure of 410 mTorr in the N2/SiH4 and N2/SiH4/NH3 atmospheres. To investigate the radical generation and plasma formation and their control for the growth of the film, plasma diagnostic tools like vacuum ultraviolet absorption spectroscopy (VUVAS), optical emission spectroscopy (OES), and RF compensated Langmuir probe (LP) were utilized. Utilization of RF/UHF hybrid plasmas enables very high plasma densities ~ 1011 cm-3 with low electron temperature. Measurements using VUVAS reveal the UHF source is quite effective in the dissociation of the N2 gas to generate more active atomic N. It results in the enhancement of the Si-N bond concentration in the film. Consequently, the deposition rate has been significantly improved up to 2nm/s for the high rate synthesis of highly transparent (up to 90 %) SiNx:H film. The films properties such as optical transmittance and chemical composition are investigated using different analysis tools.

  • PDF

Photo Displacement Properties of Nano structure Organic Ultra Thin Films (통신용 부품제작을 위한 유기초박막의 전자특성에 관한 연구)

  • Song, Jin-Won;Cho, Su-Young;Kim, Young-Gun;Kim, Hyung-Gon;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11b
    • /
    • pp.27-32
    • /
    • 2004
  • Maxwell displacement current (MDC) measurement has been employed to study the dielectric property of Langmuir-films. MDC flowing across monolayers is analyzed using a rod-like molecular model. A method for determining the dielectric relaxation time ${\tau}$ of floating 'monolayers on the water surface is presented. MDC floing across monolayers is analyzed using a rod-like molecular model. It is revealed that the dielectric relaxation time ${\tau}$ of monolayers in the isotropic polar orientational phase is determined using a liner relationship between the monolayer compression speed a and the molecular area Am. Compression speed a was about 30,40,50mm/min. LB layers of Arachidic acid deposited by LB method were deposited onto slide glass as Y-type film.The physicochemical properties of the LB films were examined by UV absorption spectrum, SEM and AFM. The structure of manufactured device is Au/Arachidic acid/Al, the number of accumulated layers are 3~9. Also, we then examined of the MIM device by means of I-V characteristic of the device is measured from -3 to +3[V]. The insulation property of a thin film is better as the distance between electrodes is larger.

  • PDF

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

Optical Behavior and Electrical Properties of Functional Dendrimer Thin Films (기능성 덴드리머 박막의 광학적 거동 및 전기적 특성)

  • 박재철;정상범;권영수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.201-205
    • /
    • 2003
  • We synthesized dendrimers containing light switchable units, azobenzene group. And the dendrimer containing 48 pyridinepropanol functional end group, which could form a complex structure with metal ions was synthesized. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area($\pi$-A) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. The samples for electrical measurement were fabricated to two types which were pure dendrimer with pyridinepropanol group and its complexes with $Pt^4+$ ions by LB method. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of Metal/Dendrimer LB films/Metal(MIM) structure. And we have investigated different results in the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure dendrimer with pyridinevopanol group and its complex with $Pt^4+$ ions. In conclusion, it is demonstrated that the metal ion around dendrimer with pyri야nepropanol group can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties. This results suggest that the dendrimers with azobenzene group and pvridinedropanol group can be applied to high efficient nano-device of molecular level.

Electrical properties of $C_{22}$-Quinolium(TCNQ) LB films depending on a type of applied voltage and temperature (인가 전압 형태 및 온도에 따른 $C_{22}$-Quinolium(TCNQ) LB막의 전기적 특성)

  • Song, Il-Seok;Yoo, Deok-Son;Kim, Young-Kwan;Kim, Tae-Wan;Kang, Dou-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1193-1196
    • /
    • 1993
  • Electrical properties of $C_{22}$-Quinolium(TCNQ) Langmuir-Blodgett(LB) films are reported depending on a type of applied voltage on a type of applied voltage and temperature. A conductivity was identified to be anisotropic with a ratio of ${\sigma}||/{\sigma}{\bot}{\simeq}10^7$ at room temperature. The I-V characteristics along the film surface direction show an ohmic behavior up to a few hundred volts. But the I-V characteristics in the vertical direction display an ohmic behavior for low-electric field, and a nonohmic behavior for high-electric field. This nonohmic behavior has already been interpreted as a conduction mechanism of space-charge limited current and Schottky effect near the electric-field strengh of $10^6$ V/cm. When the electric field exceeds further, there is anormalous phenomia similiar to breakdown. From the study of I-V characteristics with the application of step or pulse voltage, we have found that the breakdown voltage shifts to higher one as the step or pulse interval becomes shorter. These results indicate that the breakdown is due to both electrical and thermal effect. To see the infulence of temperature, current was measured as function of temperature with several bias voltages, which are lower than that of breakdown. It shows that the current increases about 3 orders of magnitude near $60{\sim}70^{circ}C$, and remains constant for a while up to $140^{\circ}C$ and then suddenly drops. Arahidic acid was used to cmpare with $C_{22}$-Quinolium(TCNQ) LB films.

  • PDF

Physical properties for the LB films of the N-docosylquinolium-TCNQ incorporated with TCNQ (TCNQ가 흡착된 N-docosylquinolium-TCNQ LB 유기 초박막의 물리적특성)

  • Choi, Kang-Hoon;Shin, Dong-Myung;Sohn, Byung-Chung;Kang, Dou-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1197-1199
    • /
    • 1993
  • The molecular electronic devices of organic materials are of current interest. Langmuir-Blodgett(LB) method is the most possible candidate for the development of the molecular electronic devices. One of the critical problems for applications of the LB films to the commercial products will be an electrical conductivity within a LB film. We studied the monolayer characteristics and electrical conductivity of the 1:1 mixture LB films of N-docosylquinolium-TCNQ and $TCNQ^0$. There were some differences in the $\pi-A$ isotherm and UV-visible absorption spectrum of N-docosylquinolium-TCNQ and 1:1 mixture. The small critical area of the $\pi-A$ isotherm for 1:1 mixture may result from the bilayer formation. We confirmed the incorporation of the $TCNQ^0$ with the N-docosylquinolium-TCNQ from the UV-visible absorption spectrum. But the electrical conductivity measured was $10^{-7}$ S/cm for the 1:1 mixture film layered at the surface pressure of 35 mN/m. We couldn't gain any electrical conductivity by mixing the $TCNQ^0$ into the N-docosylquinolium-TCNQ layer. We supposed that $TCNQ^0$ mixed in was not packed parallel to the TCNQ anion radical faces.

  • PDF

Optical Behavior and Electrical Properties of Functional Dendrimer Thin Films (기능성 덴드리머 박막의 광학적 거동 및 전기적 특성)

  • 박재철;정상범;권영수
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.201-201
    • /
    • 2003
  • We synthesized dendrimers containing light switchable units, azobenzene group. And the dendrimer containing 48 pyridinepropanol functional end group, which could form a complex structure with metal ions was synthesized. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area($\pi$-A) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. The samples for electrical measurement were fabricated to two types which were pure dendrimer with pyridinepropanol group and its complexes with $Pt^4+$ ions by LB method. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of Metal/Dendrimer LB films/Metal(MIM) structure. And we have investigated different results in the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure dendrimer with pyridinevopanol group and its complex with $Pt^4+$ ions. In conclusion, it is demonstrated that the metal ion around dendrimer with pyri야nepropanol group can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties. This results suggest that the dendrimers with azobenzene group and pvridinedropanol group can be applied to high efficient nano-device of molecular level.

Diamond-Like Carbon Films Deposited by Pulsed Magnetron Sputtering System with Rotating Cathode

  • Chun, Hui-Gon;You, Yong-Zoo;Nikolay S. Sochugov;Sergey V. Rabotkin
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.296-300
    • /
    • 2003
  • Extended cylindrical magnetron sputtering system with rotating 600-mm long and 90-mm diameter graphite cathode and pulsed power supply voltage generator were developed and fabricated. Time-dependent Langmuir probe characteristics as well as carbon films thickness were measured. It was shown that ratio of ions flux to carbon atoms flux for pulsed magnetron discharge mode was equal to $\Phi_{i}$ $\Phi$sub C/ = 0.2. It did not depend on the discharge current in the range of $I_{d}$ / = 10∼60 A since both the plasma density and the film deposition rate were found approximately proportional to the discharge current. In spite of this fact carbon film structure was found to be strongly dependent on the discharge current. Grain size increased from 100 nm at $I_{d}$ = 10∼20 A to 500 nm at $I_{d}$ = 40∼60 A. To deposit fine-grained hard nanocrystalline or amorphous carbon coating current regime with $I_{d}$ = 20 A was chosen. Pulsed negative bias voltage ($\tau$= 40 ${\mu}\textrm{s}$, $U_{b}$ = 0∼10 ㎸) synchronized with magnetron discharge pulses was applied to a substrate and voltage of $U_{b}$ = 3.4 ㎸ was shown to be optimum for a hard carbon film deposition. Lower voltages were not sufficient for amorphization of a growing graphite film, while higher voltages led to excessive ion bombardment and effects of recrystalization and graphitization.