• Title/Summary/Keyword: Langmuir and Freundlich isotherms

Search Result 134, Processing Time 0.031 seconds

Evaluation of Adsorption Characteristics of 2-Picoline onto Sylopute (실로퓨트에 대한 2-피콜린의 흡착 특성 평가)

  • Yang, Ji-Won;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.210-218
    • /
    • 2019
  • Batch experiment studies were carried out on the adsorption of the major tar compound, 2-picoline, derived from the plant cell cultures of Taxus chinensis, using Sylopute while varying parameters such as initial 2-picoline concentration, contact time and adsorption temperature. The experimental data were fitted to the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Comparison of results revealed that the Langmuir isotherm model could account for the adsorption isotherm data with the highest accuracy among the four isotherm models considered. From the analysis of adsorption isotherms, it was found that adsorption capacity decreased with increasing temperature and the adsorption of 2-picoline onto Sylopute was favorable. The kinetic data were well described by the pseudo-second-order kinetic model, while intraparticle diffusion and boundary layer diffusion did not play a dominated role in 2-picoline adsorption according to the intraparticle diffusion model. Thermodynamic parameters revealed the exothermic, irreversible and non-spontaneous nature of adsorption. The isosteric heat of adsorption decreased as surface loading ($q_e$) increased, indicating a heterogeneous surface.

Adsorption Characteristics of Copper using Biochar Derived from Exhausted Coffee Residue (커피찌꺼기 biochar를 활용한 구리의 흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Yeong-Jin;Kim, Seong-Heon;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • BACKGROUND: There is very limited knowledge of the effects of biochar derived from exhausted coffee residue on metal adsorption processes. Furthermore, only limited information is available on the adsorption mechanism of copper. The aim of this study was to evaluate the absorption behaviors of copper by biochar derived from exhausted coffee residue. METHODS AND RESULTS: Biochars produced by pyrolysis of exhausted coffee residue at $300^{\circ}C$(CB300) and $600^{\circ}C$(CB600) were characterized and investigated as adsorbents for the removal of copper from aqueous solution. The results indicated that the adsorption equilibrium was achieved around 2 h and the pseudo-second-order kinetic model fit the data better than the pseudo-first-order kinetic model. The maximum Cu adsorption capacities of CB600 by Freundlich and Langmuir isotherms were higher than those of CB300. The adsorption data were well described by a Langmuir isotherm compare to Freundlich isotherm. CONCLUSION: Our results suggest that exhausted coffee residue can be used as feedstock materials to produce high quality biochar, which could be used as adsorbents to removal copper.

Analysis on Isotherm, Kinetic and Thermodynamic Properties for Adsorption of Acid Fuchsin Dye by Activated Carbon (활성탄에 의한 Acid Fuchsin 염료의 흡착에 대한 등온선, 동력학 및 열역학 특성치에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.458-465
    • /
    • 2020
  • Isotherms, kinetics and thermodynamic properties for adsorption of acid fuchsin (AF) dye by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration and contact time and temperature. The effect of pH on adsorption of AF showed a bathtub with high adsorption percentage in acidic (pH 8). Isothermal adsorption data were fitted to the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models. Freundlich isothem model showed the highest agreement and confirmed that the adsorption mechanism was multilayer adsorption. It was found that adsorption capacity increased with increasing temperature. Freundlich's separation factor showed that this adsorption process was an favorable treatment process. Estimated adsorption energy by Dubinin-Radushkevich isotherm model indicated that the adsorption of AF by activated carbon is a physical adsorption. Adsorption kinetics was found to follow the pseudo-second-order kinetic model. Surface diffusion at adsorption site was evaluated as a rate controlling step by the intraparticle diffusion model. Thermodynamic parameters such as activation energy, Gibbs free energy, enthalpy entropy and isosteric heat of adsorption were investigated. The activation energy and enthalpy change of the adsorption process were 21.19 kJ / mol and 23.05 kJ / mol, respectively. Gibbs free energy was found that the adsorption reaction became more spontaneously with increasing temperature. Positive entropy was indicated that this process was irreversible. The isosteric heat of adsorption was indicated physical adsorption in nature.

Characteristics of Isotherm, Kinetic and Thermodynamic Parameters for the Adsorption of Acid Red 66 by Activated Carbon (활성탄에 의한 Acid Red 66의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.30-38
    • /
    • 2020
  • The kinetic and thermodynamic parameters of Acid Red 66, adsorbed by granular activated carbon, were investigated on areas of initial concentration, contact time, and temperature. The adsorption equilibrium data were applied to Langmuir, Freundlich, Temkin, Redlich-Peterson, and Temkin isotherms. The agreement was found to be the highest in the Freundlich model. From the determined Freundlich separation factor (1/n = 0.125 ~ 0.232), the adsorption of Acid Red 66 by granular activated carbon could be employed as an effective treatment method. Temkin's constant related to adsorption heat (BT = 2.147 ~ 2.562 J mol-1) showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo-second order model with good agreement. The results of the intraparticle diffusion equation showed that the inclination of the second straight line representing the intraparticle diffusion was smaller than that of the first straight line representing the boundary layer diffusion. Therefore, it was confirmed that intraparticle diffusion was the rate-controlling step. From thermodynamic experiments, the activation energy was determined as 35.23 kJ mol-1, indicating that the adsorption of Acid Red 66 was physical adsorption. The negative Gibbs free energy change (ΔG = -0.548 ~ -7.802 kJ mol-1) and the positive enthalpy change (ΔH = +109.112 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, respectively. The isosteric heat of adsorption increased with the increase of surface loading, indicating lateral interactions between the adsorbed dye molecules.

Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent (메조공극 흡착제를 이용한 상수원수내 맛·냄새 유발물질 제거특성 평가)

  • Kim, Jong-Doo;Park, Chul-Hwi;Yun, Yeo-Bog;Lee, Dae-Sung;Kim, Hyo-Jeon;Kang, Seok-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • The objective of this study was to evaluate the characteristic of adsorption by using a meso-porous adsorbent (MPA), and investigate the removal efficiency of geosmin which taste and odor causing compounds in drinking water supplies through batch test. The results for the adsorption isotherm was analyzed by using the Langmuir equation and Freundlich equation, generally being applied. And the study showed that the both Langmuir and Freundlich equation explains the results better. Both of pseudo-first-order model and pseudo-second-order model were respectively applied for evaluation of kinetic sorption property of geosmin onto MPA. The adsorption experiment results using MPA showed that maximum adsorption capacity of MPA was lower 7 times than that of GAC, and adsorption rate of MPA was faster 11 times than that of GAC, on the basis of pseudo-first-order model. Therefore, it was determined that MPA was effectively able to remove geosmin in drinking water supplies in short EBCT condition, but regeneration cycle in MAP process was shorter than that in conventional process.

Application of Adsorption Characteristic of Ferrous Iron Waste to Phosphate Removal from Municipal Wastewater (폐산화철의 흡착특성을 이용한 도시하수내 인 처리)

  • Kim, Jin-Hyung;Lim, Chae-Sung;Kim, Keum-Yong;Kim, Dae-Keun;Lee, Sang-Ill;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • This study proposed the method of phosphate recovery from municipal wastewater by using ferrous iron waste, generated from the mechanical process in the steel industry. In the analysis of XRD, ferrous iron waste was composed of $Fe_3O_4$ (magnetite), practically with $Fe^{2+}$ and $Fe^{3+}$. It had inverse spinel structure. In order to identify the adsorption characteristic of phosphate on ferrous iron waste, isotherm adsorption test was designed. Experimental results were well analyzed by Freundlich and Langmuir isotherm theories. Empirical constants of all isotherms applied increased with alkalinity in the samples, ranging from 1.2 to 235 $CaCO_3/L$. In the regeneration test, empirical constants of Langmuir isotherm, i.e., $q_{max}$ (maximum adsorption capacity) and b (energy of adsorption) decreased as the frequency of regeneration was increased. Experiment was further performed to evaluate the performance of the treatment scheme of chemical precipitation by ferrous iron waste followed by biological aerated filter (BAF). The overall removal efficiency in the system increased up to 80% and 90% for total phosphate (TP) and soluble phosphate (SP), respectively, and the corresponding effluent concentrations were detected below 2 mg/L and 1 mg/L for TP and SP, respectively. However, short-circuit problem was still unsolved operational consideration in this system. The practical concept applied in this study will give potential benefits in achieving environmentally sound wastewater treatment as well as environmentally compatible waste disposal in terms of closed substance cycle waste management.

Aqueous phase removal of ofloxacin using adsorbents from Moringa oleifera pod husks

  • Wuana, Raymond A.;Sha'Ato, Rufus;Iorhen, Shiana
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.49-68
    • /
    • 2015
  • Chemically activated and carbonized adsorbents were prepared from Moringa oleifera pod husks (MOP), characterized and evaluated for their ability to remove a common antibiotic - ofloxacin (OFX) from aqueous solution. The pulverized precursor was steeped in a saturated ammonium chloride solution for a day to give the chemically activated adsorbent (AMOP). A portion of AMOP was pyrolyzed in a muffle furnace at 623 K for 30 min to furnish its carbonized analogue (CMOP). The adsorbents showed favorable physicochemical attributes. The effects of operational parameters such as initial OFX solution pH and concentration, adsorbent dosage, temperature and contact time on OFX removal were investigated. At equilibrium, optimal removal efficiencies of 90.98% and 99.84% were achieved at solution pH 5 for AMOP and CMOP, respectively. The equilibrium adsorption data fitted into both the Langmuir and Freundlich isotherms. Gibbs free energy change (${\Delta}G^o$), enthalpy change (${\Delta}H^o$) and entropy change (${\Delta}S^o$) indicated that the adsorption of OFX was feasible, spontaneous, exothermic and occurred via the physisorption mode. Adsorption kinetics obeyed the Blanchard pseudo-second-order model. The results may find applications in the adsorptive removal of micro-contaminants of pharmaceutical origin from wastewater.

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

A Study on Recycle of Waste Concretes for Neutralization and Removal of Heavy Metals ( I ) (페콘크리트의 중화 및 중금속 제거를 위한 재활용에 관한 연구 (I))

  • Kim, Eun-Ho;Kim, Jung-Kwon;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.497-503
    • /
    • 1997
  • This study was performed to Investigate the utilization of waste concretes for neutralization and removal of heavy metals In plating wastewater, because waste concretes have been known to be very porous, to have high species surface area and to have alkaline minerals such as calcium. The results obtained from this research showed that waste concretes had a buffer capacity to neutralize an acidic alali system in plating wastewater. Generally, neutralization and removal rate of heavy metals were excellent in the increase of waste concrete amounts and a small size. Because a coefficient of correlation was high, it seemed that removal of heavy metals could be explained by Freundlich and Langmuir isotherms. If we reflected the adsorption capacity(k) and adsorption intensity(1/n) of Freundlich isotherm, we couldn't consider waste concretes as a good adsorbent. But, we could know that waste concretes were capable of removing a part of heavy metals. In point of building waste debris, if waste concretes substituted for a valuable adsorbent such as actuated carbon, they could look forward to an expected economical effect.

  • PDF

Equilibrium and kinetic studies for the removal of cationic dye using banana pith

  • El-Maghraby, Azza;Taha, Nahla A.
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.217-230
    • /
    • 2014
  • The large quantity of green cull bananas has the potential of being used industrially and, thereby, to improve banana economics and eliminate the large environmental problem presented by banana waste. Wastewaters from textile, cosmetics, printing, dying, food colouring, and paper-making industries are polluted by dyes. The adsorption of basic dye by waste banana pith was investigated by varying dye concentrations, adsorbent dose, particle size and agitation rate. The adsorption capacity was found to be maximum value of removal by using 0.1 g of sorbent with particle size 1mm at mixing speed 200 rpm for initial concentration 25 mg/l to reach value of approximate 89%. The Langmuir, Temkin and Freundlich adsorption models were used for mathematical description of the adsorption equilibrium and it was found that experimental data fitted very well to these models except Langmuir model. Adsorption of dye was applied on (pseudo-first and pseudo-second-order kinetics), and the experimental data was more fitted to pseudo second order. The results of this study showed that banana pith could be employed as effective and low-cost materials for the removal of dyes from aqueous solutions.