• Title/Summary/Keyword: Langmuir 흡착 모델

Search Result 139, Processing Time 0.031 seconds

Development of Volume Modified Sorption Model and Prediction for Volumetric Strain of Coal Matrix (흡착에 의한 석탄암체의 부피변화가 고려된 흡착모델 개선 및 부피변형률 예측)

  • Kim, Sang-Jin;Sung, Won-Mo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2015
  • We proposed the improved Langmuir adsorption relations considering volume change effect of coal matrix during primary production of CBM and Enhanced-CBM with injection of carbon dioxide or CCS in coalseam but also volumetric strain. To verify this model, experimental data of pure gas adsorption such as $CO_2$, $CH_4$, and $N_2$ on coals were used to compare conventional Langmuir model with this model. From the results, we obtained that the larger adsorption capacity of coal and the higher adsorption affinity of gas, the larger error occur with Langmuir model. Using this model, however, we found not only substantially better fit in all condition but also reasonable volumetric strain of the coal matrix. We also applied this volume modified pure gas adsorption model to the IAS model to describe gas adsorption and volumetric strain for mixed gas. This modified-IAS model fitting experimental data by Hall et al(1994) improved accuracy of mixed gas adsorption calculation compared with conventional model.

Altered Langmuir Adsorption Isotherm under the Consideration of the Displacement of Water Molecules with Adsorbate Ion at the Surface of Adsorbent (흡착제(吸着劑) 표면(表面)에서의 흡착질(吸着質)과 물분자(分子)의 치환(置換)을 고려(考慮)한 수정(修正) Langmuir 등온흡착식(等溫吸着式))

  • Kim, Dong-Su
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.81-86
    • /
    • 2006
  • Altered Langmuir adsorption isotherm has been suggested for adsorption reactions occurring in aqueous environment based upon the concept of the steric displacement between adsorbates and water molecules at the surface of adsorbent. For the adsorption of $Cd^{2+}$ on activated carbon, the suggested adsorption isotherm was shown to be more well applied to the experimental results compared with the classical Langmuir adsorption isotherm. Based on this, regarding the adsorption system which following the Langmuir model more precise design and controllable operation of the process were considered to be attainable when the adsorption process is analyzed employing the altered adsorption isotherm.

Analysis for Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Aniline Blue Using Activated Carbon (활성탄을 이용한 아닐린 블루의 흡착평형, 동역학 및 열역학 파라미터에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.679-686
    • /
    • 2019
  • Characteristics of adsorption equilibrium, kinetic and thermodynamic of aniline blue onto activated carbon from aqueous solution were investigated as function of initial concentration, contact time and temperature. Adsorption isotherm of aniline blue was analyzed by Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models. Langmuir isotherm model fit better with isothermal data than other isotherm models. Estmated Langmuir separation factors ($R_L=0.036{\sim}0.068$) indicated that adsorption process of aniline blue by activated carbon could be an effective treatment method. Adsorption kinetic data were fitted to pseudo first order model, pseudo second order model and intraparticle diffusion models. The kinetic results showed that the adsorption of aniline blue onto activated carbon well followed pseudo second-order model. Adsorption mechanism was evaluated in two steps, film diffusion and intraparticle diffusion, by intraparticle diffusion model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy for adsorption process were estimated. Enthalpy change (48.49 kJ/mol) indicated that this adsorption process was physical adsorption and endothermic. Since Gibbs free energy decreased with increasing temperature, the adsorption reaction became more spontaneously with increasing temperature. The isosteric heat of adsorption indicated that there is interaction between the adsorbent and the adsorbate because the energy heterogeneity of the adsorbent surface.

Biosorption of Lead ions onto Laminaria japonica and Kjellmaniella crassifolia : Equilibrium and Kinetic Modelling (Laminaria japonica와 Kjellmaniella crassifolia를 이용한 Pb의 생체흡착 : 흡착속도 및 흡착평형 모델링)

  • Lee, Chang-Han;Ahn, Kab-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1238-1243
    • /
    • 2005
  • The batch experiments of biosorption were carried out for the removal of lead ion from metal solution using Laminaria japonica and Kjellmaniella crassifolia, two species of marine algaes as biosorbent. We have investigated biosorption kinetics and equilibrium of lead by using marine algaes. We observed that biosorption of lead occurred very rapidly by marine algaes ; the biosorption reached equilibrium less than 2 hr. These experimental data could be accurately described by a pseudo-second-order rate equation, obtaining values between $0.883{\times}10^{-3}$ and $0.628{\times}10^{-3}\;g/mg/min$ for the biosorption rate constant $k_{2,ad}$. It could be described with Langmuir, Redlich-Peterson, and Koble-Corrigan(Langmuir-Freundlich) equation. The biosorption capacity by L. japonica and K. crassifolia were in the sequence of Pb>Cd>Cr>Cu and Pb>Cu>Cd>Cr, respectively. The biosorption capacity of L. japonica were increased with pH increasing.

Pure and Binary Mixture Gases Adsorption Equilibria of Hydrogen/Methane/Ethylene on Activated Carbon (활성탄에서의 H2/CH4/C2H4 순수 기체와 이성분 혼합기체의 흡착평형)

  • Jeong, Byung-Man;Kang, Seok-Hyun;Choi, Hyun-Woo;Lee, Chang-Ha;Lee, Byung-Kwon;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.371-379
    • /
    • 2005
  • Adsorption equilibria of the gases $H_2$, $CH_4$, and $C_2H_4$ and their binary mixtures on activated carbon (Calgon co.) have been measured by static volumetric method in the pressure range of 0 to 18 atm at temperatures of 293.15, 303.15, and 313.15 K. From the parameters obtained from single component adsorption isotherm, multi-component adsorption equilibria could be predicted and compared with experimental data. The binary experimental data were applied to four models : extended Langmuir, extended Langmuir-Freundlich, Ideal Adsorbed Solution theory (IAST), and Vacancy Solution Model (VSM). The models were found to describe the experimental data with a reasonable accuracy. Extended L-F model predicts equilibria of mixture better than any other model.

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(1) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(1)-흡착등온식을 이용한 평가)

  • Na, Choon-Ki;Han, Moo-Young;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.606-616
    • /
    • 2011
  • The objectives of this study were to evaluate the applicability of adsorption models for adsorption properties of adsorbents. For this study, adsorption experiment of $NO_3^-$ ion using anion exchange resin has been investigated under adsorption equilibrium and kinetic in bach process. Adsorption equilibrium experiment were carried out that two conditions is change of adsorbate concentration and change of adsorbent weight. Experiment results have been analyzed by adsorption isotherm models, energy models and kinetic models. Under the condition of change of adsorbate concentration was best described by Sips and Redlich-Perterson isotherm models. However case of change of adsorbent weight was described by Langmuir isotherm models. It seems reasonable to assume that isotherm model was dominated by multiple mechanism according to experiment condition.

Adsorptive Characteristics of Benzene and Toluene on Activated Carbon (활성탄상에서 벤젠과 톨루엔의 흡착특성)

  • Park, Byung-Bae;Kim, Do-Su;Kim, Han-Su;Park, Yeong-Seong
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 2001
  • The effects of various factors such as adsorption temperature, interstitial velocity, species and concentration of adsorbates(benzene and toluene) and aspect ratio(L/D) on adsorption characteristics were investigated in a fixed bed with activated carbon. The breakthrough time in a fixed bed was decreased with the increasing of adsorption temperature, interstitial velocity and concentration of adsorbates. The interstitial velocity, concentration of adsorbates and adsorption temperature had influenced considerably upon the MTZ(mass transfer zone) and LUB(length of unused bed) obtained through the breakthrough curves, while aspect ratio(L/D) had smaller effect than former factors. Especially, the concentration of adsorbates among factors have the largest effect on MTZ and LUB. From comparison with the model isotherms, such as the Langmuir, Freundlich and Langmuir-Freundlich, the experimental isotherm data of benzene and toluene agreed farily well to three adsorption isotherm models.

  • PDF

Adsorption of Cadmium, Copper, and Lead on Sphagnum Peat Moss (Sphagnum 피트모스에서의 카드뮴, 구리, 납의 흡착)

  • Bang Sun-Baek;Lee Sang-Woo;Kim Ju-Yong;Yu Dong-Il;Kang Yong-Kon;Kim Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.103-109
    • /
    • 2006
  • Batch adsorption experiments were performed to adsorb cadmium [Cd(II)], copper [Cu(II)], and lead [Pb(II)] onto sphagnum peat moss. According to the results, 10-50 mg/L of Cd(II), Cu(II), and Pb(II) were effectively adsorbed and removed within 1 h by 1.0 g/L of sphagnum peat moss. The amounts of Cd(II), Cu(II), and Pb(II) adsorbed on sphagnum peat moss increased with increasing the initial concentrations. The kinetics for the adsorption of Cd(II), Cu(II), and Pb(II) on sphagnum peat moss was described well using the pseudo-second order model at different initial concentrations. The maximum adsorption capacities calculated from the Langmuir isotherm for Cd(II), Cu(II), and Pb(III) were 33.90, 29.15, and 91.74 mg/g, respectively. Experimental results showed that sphagnum peat moss was a very effective adsorbent on the adsorption of Cd(II), Cu(II), and Pb(II).

Adsorption characteristics of Pb by various particle sizes of microplastics in aqueous solution (수용액에서 입자크기에 따른 미세플라스틱의 Pb 흡착특성)

  • Taejung Ha;Minjune Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.149-149
    • /
    • 2023
  • 미세플라스틱은 입자크기가 5 mm 이하인 플라스틱으로 정의되며, 수계로 유입된 미세플라스틱은 내분비계 교란물질로 작용하여 생태계에 환경독성을 유발하고 오염물질을 흡착·운반할 수 있는 독성 물질의 매개체로서 미세플라스틱의 위해성에 대한 우려가 증가하고 있다. 본 연구는 수용액에서 다양한 미세플라스틱의 납(Pb) 흡착특성을 평가하고 미세플라스틱의 비표면적에 따른 흡착 효과를 비교하고자 하였다. 플라스틱 종류 중 HDPE (High-density Polyethylene)와 PVC (Polyvinyl Chloride)를 각각 세 가지 크기(Group 1: 2.5 mm - 1.0 mm, Group 2: 1.0 mm - 0.3 mm, Group 3: < 0.3 mm)로 제조하여 분류하였으며, 미세플라스틱 입자크기의 비표면적은 BET(Brunauer, Emmett, Teller)분석을 통하여 측정하였다. 담수환경 조성을 위해 pH 7로 조절한 Pb 용액의 농도(0, 0.5, 1, 5, 10, 30 mg/L)별 흡착실험을 수행하였으며 실험결과를 3가지 흡착등온식(Langmuir, Freundlich, Sips 모델)을 사용하여 미세플라스틱에서 Pb 흡착 거동을 나타내었다. BET 분석 측정결과, PVC의 경우 Group 3 > Group 2 > Group 1 순으로 PVC의 입자크기가 작을수록 비표면적이 크게 나타났으며, HDPE 비표면적 또한 비슷한 경향을 보였다. HDPE와 PVC에서 Pb의 흡착은 Langmuir 모델(R2 > 0.97)과 Freundlich 모델(R2 > 0.82)보다 Sips 모델(R2 > 0.98)이 흡착 거동을 설명하기에 가장 적합하였다. 최대흡착능(Qm) 상수는 입자크기가 작아질수록 흡착능이 높아지는 추세를 보였으며, 흡착세기(KF)와 흡착강도(n-1)는 각 플라스틱의 Group 3(HDPE KF = 0.028, PVC KF = 0.032; HDPE n-1 = 0.225, PVC n-1 = 0.547)에서 가장 높게 나타났다. 본 연구를 통해 HDPE와 PVC에서 Pb의 흡착특성은 Sips모델로 설명이 가능했으며, 이에 따라 Pb 흡착과정에 복수의 흡착메커니즘이 작용하고 있음을 유추해볼 수 있었다. 미세플라스틱의 입자크기와 비표면적이 Pb 흡착량에 영향을 미치는 것을 알 수 있었으며, 미세플라스틱이 중금속을 흡착하여 생물체 내로 전이시킬 수 있는 매개체 역할의 가능성을 확인하였다.

  • PDF

Adsorption Characteristics of Copper using Biochar Derived from Exhausted Coffee Residue (커피찌꺼기 biochar를 활용한 구리의 흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Yeong-Jin;Kim, Seong-Heon;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • BACKGROUND: There is very limited knowledge of the effects of biochar derived from exhausted coffee residue on metal adsorption processes. Furthermore, only limited information is available on the adsorption mechanism of copper. The aim of this study was to evaluate the absorption behaviors of copper by biochar derived from exhausted coffee residue. METHODS AND RESULTS: Biochars produced by pyrolysis of exhausted coffee residue at $300^{\circ}C$(CB300) and $600^{\circ}C$(CB600) were characterized and investigated as adsorbents for the removal of copper from aqueous solution. The results indicated that the adsorption equilibrium was achieved around 2 h and the pseudo-second-order kinetic model fit the data better than the pseudo-first-order kinetic model. The maximum Cu adsorption capacities of CB600 by Freundlich and Langmuir isotherms were higher than those of CB300. The adsorption data were well described by a Langmuir isotherm compare to Freundlich isotherm. CONCLUSION: Our results suggest that exhausted coffee residue can be used as feedstock materials to produce high quality biochar, which could be used as adsorbents to removal copper.