• 제목/요약/키워드: Lane keeping assist system

검색결과 13건 처리시간 0.025초

횡풍하의 차량 외란 추정을 이용한 차선 유지 조향 보조 제어기 설계 (Design of Lane Keeping Steering Assist Controller Using Vehicle Lateral Disturbance Estimation under Cross Wind)

  • 임형호;좌은혁;이경수
    • 자동차안전학회지
    • /
    • 제12권3호
    • /
    • pp.13-19
    • /
    • 2020
  • This paper presents steering controller for unintended lane departure avoidance under crosswind using vehicle lateral disturbance estimation. Vehicles exposed to crosswind are more likely to deviate from lane, which can lead to accidents. To prevent this, a lateral disturbance estimator and steering controller for compensating disturbance have been proposed. The disturbance affecting lateral motion of the vehicle is estimated using Kalman filter, which is on the basis of the 2-DOF bicycle model and Electric Power Steering (EPS) module. A sliding mode controller is designed to avoid unintended the lane departure using the estimated disturbance. The controller is based on the 2-DOF bicycle model and the vision-based error dynamic model. A torque controller is used to provide appropriate assist torque to driver. The performance of proposed estimator and controller is evaluated via computer simulation using Matlab/Simulink.

Performance Tradeoff Between Control Period and Delay: Lane Keeping Assist System Case Study

  • Cha, Hyun-Jun;Park, Seong-Woo;Jeong, Woo-Hyuk;Kim, Jong-Chan
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권11호
    • /
    • pp.39-46
    • /
    • 2015
  • In this paper, we propose a performance-aware workload model for efficient implementation of control systems. When implementing a control algorithm as an embedded computer system, the control code executes periodically. For such systems, its control performance depends on not only the accuracy of the control algorithm itself but also temporal parameters such as control period and sensing to actuation delay. In this regard, this paper studies the relation between control period and delay by measuring and analyzing the control performance of LKAS (Lane Keeping Assist System) with varying period and delay combinations. Through this experimental study, this paper shows that the two timing parameters, i.e.,control period and delay, has a tradeoff relation in terms of control performance.

모델기반 예측 제어기를 이용한 차선유지 보조 시스템 개발 (Development of a Model Based Predictive Controller for Lane Keeping Assistance System)

  • 황준연;허건수;나혁민;정호기;강형진;윤팔주
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.54-61
    • /
    • 2009
  • Lane keeping assistant system (LKAS) could save thousands of lives each year by maintaining lane position and is regarded as a promising active safety system. The LKAS is expected to reduce the driver workload and to assist the driver during driving. This paper proposes a model based predictive controller for the LKAS which requires cooperative driving between the driver and the assistance system. A Hardware-In-the-Loop-Simulator (HILS) is constructed for its evaluation and includes Carsim, Matlab Simulink and a lane detection algorithm. The single camera is mounted with the HILS to acquire the monitor images and to detect the lane markers. The simulation is conducted to validate the LKAS control performance in various road scenario.

안전주행을 위한 DGPS/GIS 기반의 차량제어 연구 (A Study on DGPS/GIS-based Vehicle Control for Safe Driving)

  • 이광희;박정현;이철희
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.54-58
    • /
    • 2013
  • In recent days, vehicles have become equipped with electric systems that assist and help drivers driving safe by reducing possible accidents. LDWS(Lane Departure Warning System) and LKAS(Lane Keeping Assistant System) are involved in assist systems, especially for lateral motion of vehicles. Sudden and inattentive lateral motion of vehicles due to drivers' fatigue, illness, inattention, and drowsiness are major causes of accidents in highway. LDWS and LKAS provide drivers with warnings or assisting power to reduce any possibilities of accidents. In order to prevent or minimize the possibilities of accidents, lateral motion control of vehicles has been introduced in this research. DGPS/RTK(Differential Global Positioning System/Real Time Kinematics) and GIS(Geographic Information System) have been used to obtain the current position of vehicles and decide when activate controlling lateral motion of vehicles. The presented lateral motion control has been validated with actual vehicle tests.

비젼센서와 DRPG알고리즘을 이용한 차선 유지 보조 시스템 개발 (Development of a Lane Keeping Assist System using Vision Sensor and DRPG Algorithm)

  • 황준연;허건수;나혁민;정호기;강형진;윤팔주
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.50-57
    • /
    • 2009
  • Lane Keeping Assistant Systems (LKAS) require the cooperative operation between drivers and active steering angle/torque controllers. An LKAS is proposed in this study such that the desired reference path generation (DRPG) system generates the desired path to minimize the trajectory overshoot. Based on the reference path from the DRPG system, an optimal controller is designed to minimize the cost function. A HIL (Hardware In the Loop) simulator is constructed to evaluate the proposed LKAS system. The single camera is mounted on the simulator and acquires the monitor images to detect lane markers. The performance of the proposed system is evaluated by HIL system using the Carsim and the Matlab Simulink.

Real Time Road Lane Detection with RANSAC and HSV Color Transformation

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of information and communication convergence engineering
    • /
    • 제15권3호
    • /
    • pp.187-192
    • /
    • 2017
  • Autonomous driving vehicle research demands complex road and lane understanding such as lane departure warning, adaptive cruise control, lane keeping and centering, lane change and turn assist, and driving under complex road conditions. A fast and robust road lane detection subsystem is a basic but important building block for this type of research. In this paper, we propose a method that performs road lane detection from black box input. The proposed system applies Random Sample Consensus to find the best model of road lanes passing through divided regions of the input image under HSV color model. HSV color model is chosen since it explicitly separates chromaticity and luminosity and the narrower hue distribution greatly assists in later segmentation of the frames by limiting color saturation. The implemented method was successful in lane detection on real world on-board testing, exhibiting 86.21% accuracy with 4.3% standard deviation in real time.

차량 횡방향 운동 방정식을 고려한 차대도로간 트래킹 기법 (A Study on Vehicle to Road Tracking Methodology with Consideration of vehicle lateral dynamics)

  • 신동호
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.219-230
    • /
    • 2017
  • 본 논문에서는 확장형 칼만필터를 적용하여 영상센서 기반 차대도로간 트래킹 알고리즘을 제안한다. 일반적으로 횡방향 오프셋, 차선대비 상대경로각, 전방도로 곡률은 차선유지지원시스템의 경로추종 횡방향 제어기 구성 또는 차선이탈경보시스템의 경보 로직을 위한 중요 입력값으로 활용되는데 이를 위해 본 연구에서는 영상센서 차선인식 결과값인 이미지 상의 차선 추출점의 좌표값과 더불어 요레이트, 조향각, 차속 센서 측정값, 그리고 차량의 횡방향 운동방정식을 고려한 확장형 칼만필터를 적용하여 차대도로간 트래킹 정보를 추출한다. 제안된 차대도로간 트래킹 알고리즘의 유효성을 증명하기 위해 주행 테스트 도로 상에서 DGPS-RTK 장비를 이용하여 비교 검증하여 그 유효성을 보였다.

LKAS 시험평가의 시뮬레이션 모델링 기법에 관한 연구 (A Study on the Simulation Modeling Method of LKAS Test Evalution)

  • 배건환;이선봉
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.57-64
    • /
    • 2020
  • 첨단 운전자 보조시스템(ADAS, Advanced Driver Assist System)의 주요 기술에는 적응형 순항 제어(ACC, Advanced Cruise Control), 주행 조향보조 시스템(LKAS, Lane Keeping Assist System), 자동 긴급제동 시스템(AEB, Autonomous Emergency Braking) 등이 있다. ADAS 중 LKAS는 카메라(camera)와 적외선 센서(sensor)를 사용하여 운전자가 의도하지 않은 차선이탈이 발생하였을 때, 조향 보조장치를 제어하여 주행 차선으로 복귀하는 시스템이다. 이러한 시스템의 안전성 평가와 검증을 위해 실차시험을 진행한다. 그러나 LKAS 동작 후 임의의 추가 조향각이 인가될 경우에 대한 연구는 미흡하다. 본 논문에서는 선행연구에서 제안한 시나리오에 대해 Prescan을 이용하여 추가 조향각 인가 모델링(modeling)기법을 개발하고 시뮬레이션(simulation) 하고, 실차시험을 통해 취득한 데이터(data)와의 비교분석으로 모델링 기법의 타당성을 검증하였다. 앞바퀴부터 차선까지 최대 거리오차는 0.56 m이며, 시뮬레이션과 실차시험의 차선 복귀 속도의 차이로 인해 발생하였다. 시뮬레이션과 달리 실차시험은 주행 차선으로 복귀 속도가 느려 이탈하는 차의 횡방향 변화가 상대적으로 적어 시뮬레이션과 오차가 발생한 것으로 판단된다. 시뮬레이션과 실차시험 값의 비교분석 결과 차선복귀 속도 차이는 있지만 앞바퀴부터 차선까지 거리가 약 0.5m로 수렴하는 경향성을 나타내어 신뢰성을 확인할 수 있었다.

가우시안 함수기반 RANSAC을 이용한 차선검출 기법 (Lane Detection Using Gaussian Function Based RANSAC)

  • 최연규;서은영;석수영;박주현;정호열
    • 대한임베디드공학회논문지
    • /
    • 제13권4호
    • /
    • pp.195-204
    • /
    • 2018
  • Lane keeping assist and departure prevention system are the key functions of ADAS. In this paper, we propose lane detection method which uses Gaussian function based RANSAC. The proposed method consists mainly of IPM (inverse perspective mapping), Canny edge detector, and Gaussian function based RANSAC (Random Sample Consensus). The RANSAC uses Gaussian function to extract the parameters of straight or curved lane. The proposed RANSAC is different from the conventional one, in the following two aspects. One is the selection of sample with different probability depending on the distance between sample and camera. Another is the inlier sample score that assigns higher weights to samples near to camera. Through simulations, we show that the proposed method can achieve good performance in various of environments.

국내 도로환경과 Euro NCAP VRU Test Protocol v3.0.1을 고려한 AEB(V2P) 시험평가 방법에 관한 연구 (A Study on the Test Evaluation Method of AEB (V2P) Considering the Road Environment in Korea and Euro NCAP Test Protocol v3.0.1)

  • 권병헌;이선봉
    • 자동차안전학회지
    • /
    • 제11권4호
    • /
    • pp.28-38
    • /
    • 2019
  • In the world, traffic accidents and environmental pollution caused by the increase of vehicles are becoming a serious social problem. According to the 2016 data published by the Korea Highway Traffic Authority, Korea owns 49.9 vehicles per 100 people. This is the 28th largest number among the 35 OECD member countries. In addition, the number of deaths from traffic accidents in Korea totaled 4,292, of which 1,714 were caused by traffic accidents involving vehicles and pedestrians. To reduce these human casualties, the automotive industry is constantly working on the development and commercialization of Adaptive Driver Assist System (ADAS). ADAS is the system providing convenience and safeness for drivers. In general, ADAS consists of Autonomous Emergency Braking (AEB), Highway Driving Assist (HDA), Adaptive Cruise Control (ACC), Lane Keeping Assist System (LKAS). Among them, the AEB detects the possibility of collision by the vehicle itself and plays a role of avoiding the collision or reducing the damage through active braking. For such AEB, Euro NCAP has been developing test-evaluation methods for the vulnerable since 2017. Therefore, In this paper analyzes the scenario of Euro NCAP VRU Test Protocol v3.0.1, which will be established in 2020, and proposes test conditions according to the Korean road traffic law. In addition, the reliability of the proposed scenario and test conditions was verified by comparing and analyzing the proposed theoretical evaluation formulas and actual test results.