• 제목/요약/키워드: Lane detection

검색결과 351건 처리시간 0.023초

스마트 내비게이션을 위한 TPLF 기반 다중차선 검출 기법 (Multi-lane Detection using TPLF for Smart Navigation)

  • 김성호;권순
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.896-897
    • /
    • 2014
  • 스마트 내비게이션을 위해 차량의 차선 위치를 인식할 필요가 있다. 본 논문에서는 이를 위한 선행 연구로 다중차선 검출 기법을 제안한다. 기존 Box filter, Step filter가 클러터에 취약한 부분을 보완하기 위해 Three Point Laplacian Filter (TPLF)를 제안하고 실험적으로 그 가능성을 검증한다.

  • PDF

자율주행 차량의 도로 평면선형 기반 차로이탈 허용 범위 산정 (Estimating a Range of Lane Departure Allowance based on Road Alignment in an Autonomous Driving Vehicle)

  • 김영민;김형수
    • 한국ITS학회 논문지
    • /
    • 제15권4호
    • /
    • pp.81-90
    • /
    • 2016
  • 자율주행 차량은 변화하는 도로환경에 스스로 대응 가능하여야 하여, 인간 운전자 수준의 도로환경 인지성능을 확보하여야 한다. 자율주행 차량의 센서 중 영상센서는 주행방향 결정 및 차로이탈 방지 등 조향제어 수행을 위하여 차선인식 기능을 수행한다. 현재 제시된 영상센서의 차선인식 성능기준은 ADAS(Advanced Driver Assistance System)과 관련된 '운전자 보조' 관점의 성능기준으로서, 자율주행 차량의 '주체적 인지'를 위한 성능조건과 상이할 것으로 판단된다. 본 연구에서는 자율주행 시 차선인식이 비정상적으로 지속되어, 직선구간에서 곡선구간으로 진입하는 차량이 조향실패에 따라 차로를 이탈하는 상황을 가정하였다. 차량 이동궤적을 기반하여 차로이탈 상황을 모형화하고, 차로이탈 허용 수준에 따른 자율주행 차량 영상센서 성능수준을 제시하였다. 분석 결과 승용차 조건에서 차선인식 기능이 1초 이상 연속적인 오작동을 일으킨다면 차로이탈에 의한 위험한 상황에 놓일 수 있으며, 자율주행 차량을 위하여 현재 ADAS 영상센서 성능평가 방법에서의 차로이탈조건보다 심각한 차로이탈상황을 고려한 영상센서 성능평가 방안이 필요할 것으로 판단된다.

무인차량 적용을 위한 차선강조기법 기반의 차선 인식 (Lane Recognition Using Lane Prominence Algorithm for Unmanned Vehicles)

  • 백준영;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.625-631
    • /
    • 2010
  • This paper proposes lane recognition algorithm using lane prominence technique to extract lane candidate. The lane prominence technique is combined with embossing effect, lane thickness check, and lane extraction using mask. The proposed lane recognition algorithm consists of preprocessing, lane candidate extraction and lane recognition. First, preprocessing is executed, which includes gray image acquisition, inverse perspective transform and gaussian blur. Second, lane candidate is extracted by using lane prominence technique. Finally, lane is recognized by using hough transform and least square method. To evaluate the proposed lane recognition algorithm, this algorithm was applied to the detection of lanes in the rainy and night day. The experiment results showed that the proposed algorithm can recognize lane in various environment. It means that the algorithm can be applied to lane recognition to drive unmanned vehicles.

Accumulator cells를 최적화한 안드로이드 기반의 차선 검출 시스템 개발 (Lane Detection System Development based on Android using Optimized Accumulator Cells)

  • 척트바타르 엘뎅토야;장영민;조재현;조상복
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.126-136
    • /
    • 2014
  • 지능형 교통 시스템(ITS) 및 지능형 자동차의 운전자 보조 시스템에서 차선의 경계를 검출하기 위한 허프 변환 방법이 많이 연구되고 있다. 이 방법의 경우 차선을 효과적으로 인식하지만 차선 이외의 영역의 직선들도 인식할 수 있기 때문에 인식률이 떨어질 수 있고 연산속도가 늦어진다. 본 논문에서는 이러한 문제를 해결하기 위해 Hough space에 Accumulator cells를 최적화한 방법을 이용해서 차선 경계를 인식하는 알고리즘을 제안하였다. 이를 바탕으로 H/W 검증을 통해 안드로이드용 어플리케이션을 개발하였다. 스마트 기기의 사용자라면 언제 어디서든 운전자의 주행안전을 위한 차선검출 및 차선이탈 경보시스템을 사용 할 수 있도록 하였다. 소프트웨어 검증은 OpenCV를 사용하여 93.1%의 높은 차선인식률을 보였으며, 하드웨어 실시간 검증은 안드로이드용 휴대폰을 사용하여 68.89%의 차선인식률을 보였다.

스마트폰용 차선이탈경보 애플리케이션 개발 (Development of a Lane Departure Warning Application on a Smartphone)

  • 노광현
    • 한국산학기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.2793-2800
    • /
    • 2011
  • 본 연구에서는 범용 이동정보통신기기인 스마트폰을 플랫폼으로 하는 차선이탈경보 애플리케이션을 개발하고 최적화하였다. 최근 안전주행지원 솔루션 중 하나인 차선이탈경보시스템이 상용화되고 있지만, 고성능의 전용 플랫폼을 필요로 하기 때문에 시장에 쉽게 진입하지 못하고 있다. 본 연구에서는 스마트폰인 iPhone 3GS를 플랫폼으로 하는 차선이탈경보 애플리케이션으로 개발하고 처리 속도를 최적화하였다. 효율적인 영상처리를 위해서 OpenCV를 사용하였고, 차선인식을 위해서는 차선의 기하학적 특징을 고려한 Hough Transform 기반의 휴리스틱 알고리즘이 고안되었다. 차선이탈경보 애플리케이션은 매킨토시 컴퓨터에서 Xcode 3.2.4 개발툴을 사용하여 개발되었고, 스마트폰에 다운로드하여 실제 도로에서 실험하였다. 실험결과 1.52fps의 처리 속도를 보였고, 최적화 작업을 통해 처리 속도를 3.84fps까지 향상시켰다. 향후 차선인식 알고리즘 보완, 추가 최적화 작업 및 고성능 스마트폰 플랫폼 채택 등을 통해 스마트폰용 차선이탈경보 애플리케이션을 상용화할 계획이다.

라즈베리파이와 OpenCV를 활용한 선형 검출 알고리즘 구현 (Implementation of Linear Detection Algorithm using Raspberry Pi and OpenCV)

  • 이성진;최준형;최병윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.637-639
    • /
    • 2021
  • 자율주행 연구가 활발히 진행되면서 ADAS(Advanced Driver Assistance System)에서 차량의 위치를 파악하고 경로를 유지하는데 차선 검출은 필수적인 기술이다. 차선 검출은 허프 변환과 RANSAC(Random Sample Consensus)과 같은 영상처리 알고리즘을 이용하여 검출한다. 본 논문은 라즈베리파이3 B+에 OpenCV를 이용하여 선형 도형 검출 알고리즘을 구현하고 있다. OpenCV 가우시안 블러 구조와 캐니 에지 검출을 통해 문턱값을 설정하였고, 선형 검출 알고리즘을 통한 차선 인식에 성공하였다.

  • PDF

도로조명변화 및 노면표시에 강인한 차선 검출 및 이탈 경고 시스템 (A Lane Detection and Departure Warning System Robust to Illumination Change and Road Surface Symbols)

  • 김광수;최승완;곽수영
    • 한국산업정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.9-16
    • /
    • 2017
  • 본 논문에서는 도로에서 주행 중인 차량에서 차선을 검출하고 차선이탈여부를 확인 및 경고처리할 수 있는 영상기반의 알고리즘을 제안한다. 차량 탑재된 카메라 영상을 이용하여 차선을 검출하는 경우, 도로면 위의 다양한 표지로 인하여 오검출률이 증가하거나, 터널 통과시 터널 내의 조명 효과로 인해 노랑색의 중앙선이 미검출되거나 또는 우천시 차선 검출이 쉽지 않은 문제들을 안고 있기 때문에 제안된 알고리즘은 이러한 문제점들을 해결하는 데에 초점을 맞추었다. 또한 제안된 알고리즘은 검출된 차선 정보를 이용하여 차로 내에서 한쪽으로 치우치는 정도를 판단하여 차선 이탈 여부를 확인하고 경고처리할 수 있다. 제안된 알고리즘의 성능은 블랙박스를 통해 얻어진 실제 도로주행 영상을 이용하여 도로의 조명변화가 심하거나 노면에 표시가 있는 환경에서의 테스트 하였고, 실험 결과 높은 검출률을 보이는 것을 확인하였다.

다중센서 기반 차선정보 시공간 융합기법 (Lane Information Fusion Scheme using Multiple Lane Sensors)

  • 이수목;박기광;서승우
    • 전자공학회논문지
    • /
    • 제52권12호
    • /
    • pp.142-149
    • /
    • 2015
  • 단일 카메라 센서를 기반으로 한 차선검출 시스템은 급격한 조도 변화, 열악한 기상환경 등에 취약하다. 이러한 단일 센서 시스템의 한계를 극복하기 위한 방안으로 센서 융합을 통해 성능 안정화를 도모할 수 있다. 하지만, 기존 센서 융합의 연구는 대부분 물체 및 차량을 대상으로 한 융합 모델에 국한되어 차용하기 어렵거나, 차선 센서의 다양한 신호 주기 및 인식범위에 대한 상이성을 고려하지 않은 경우가 대부분이었다. 따라서 본 연구에서는 다중센서의 상이성을 고려하여 차선 정보를 최적으로 융합하는 기법을 제안한다. 제안하는 융합 프레임워크는 센서 별 가변적인 신호처리 주기와 인식 신뢰 범위를 고려하므로 다양한 차선 센서 조합으로도 정교한 융합이 가능하다. 또한, 새로운 차선 예측 모델의 제안을 통해 간헐적으로 들어오는 차선정보를 세밀한 차선정보로 정밀하게 예측하여 다중주기 신호를 동기화한다. 조도환경이 열악한 환경에서의 실험과 정량적 평가를 통해, 제안하는 융합 시스템이 기존 단일 센서 대비 인식 성능이 개선됨을 검증한다.

Real Time Multiple Vehicle Detection Using Neural Network with Local Orientation Coding and PCA

  • Kang, Jeong-Gwan;Oh, Se-Young
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.636-639
    • /
    • 2003
  • In this paper, we present a robust method for detecting other vehicles from n forward-looking CCD camera in a moving vehicle. This system uses edge and shape information to detect other vehicles. The algorithm consists of three steps: lane detection, ehicle candidate generation, and vehicle verification. First after detecting a lane from the template matching method, we divide the road into three parts: left lane, front lane, and right lane. Second, we set the region of interest (ROI) using the lane position information and extract a vehicle candidate from the ROI. Third, we use local orientation coding (LOC) edge image of the vehicle candidate as input to a pretrained neural network for vehicle recognition. Experimental results from highway scenes show the robustness and effectiveness of this method.

  • PDF

영상처리 기반의 차선인식 알고리즘 (Lane Recognition Algorithm by an Image Processing)

  • 이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.759-764
    • /
    • 1998
  • We propose a novel algorithm capable of recognizing the road lane by image processing. Considering the fact that the direction and location of road lane are maintained similarly in successive images we formulate a function to represent the property. However, as noises play the role of making a lot of similar patterns appear and disappear in the road image, keeping of robustness in the lane detection has been known a difficult work. To overcome this problem, we introduce the following three ideas: 1) design of a function based on an edge direction and magnitude, 2) construction of a recursive filter to estimate the function recursively for successive images, 3) principal axis-based line fitting. These concepts enhance the adaptability to cope with the random environment of traffic scene and eventually lead to the reliable detection of a road lane.

  • PDF