• Title/Summary/Keyword: Lane change

Search Result 237, Processing Time 0.03 seconds

A Study on the Warning Characteristics of LDWS using Driver's Reaction Time and Vehicle Type (차량 종류 및 운전자 인지반응 시간을 이용한 LDWS 경고 특성에 관한 연구)

  • Park, Hwanseo;Chang, Kyungjin;Yoo, Songmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2016
  • More than 80 percent of traffic accidents related with lane departure believed to be the result of crossing the lane due to either negligence or drowsiness of the driver. Lane-departure related accident in the highway usually involve high fatality. Even though LDWS is believed to prevent accident 25% and reduce fatalities by 15% respectively, its effectiveness in performance is yet to be confirmed in many aspects. In this study, the vehicle lateral locations relative to warning zone envelop (earliest and latest warning zone) defined in ISO standard, ECE and NHTSA regulations are compared with respect to various factors including delays, vehicle speed and vehicle heading angle with respect to the lane. Since LDWS is designed to be activated at the speed over 60 km/h, vehicle speed range for the study is set to be from 60 to 100 km/h. The vehicle heading angle (yaw angle) is set to be up to 5 degree away from the lane (abrupt lane change) considering standard for lane change test using double lane-change test specification. The TLC is calculated using factors like vehicle speed, yaw angle and reaction time. In addition, the effect of vehicle type and reaction time have been considered to assess LDWS safety.

Driver Workload Comparisons among Road Sections of Automated Highway Systems (자동주행 시스템 구간별 운전자 부하 비교 연구)

  • Cha, Du-Won;Park, Beom
    • Proceedings of the KOR-KST Conference
    • /
    • 2003.02a
    • /
    • pp.119-126
    • /
    • 2003
  • The aim of this research was to compare driver's workload among AHS (Automate Highway Systems) road sections in a virtual AHS environment that is based on a re Korean expressway in order to predict and compare the workloads imposed by the change (driver-vehicle interface and vehicle control authority. Road sections included the M (Manual Lane), TL1 (Transition Lane to enter the automated lane), AL (Automated Lane TL2 (Transition Lane to enter the manual lane after the end of automated driving), an post-AHS manual lane.

  • PDF

Hybrid Controller Design for a Safe Lane Change Maneuver in Automated Highway Systems (차량 자동주행 시스템의 안전한 차선변경을 위한 하이브리드 제어기 설계)

  • 최재원;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.17-17
    • /
    • 2000
  • In this paper, we design a hybrid controller for a safe lane change maneuver in automated highway systems(AHS). The proposed hybrid controller consists of a supervisor which controls the behaviors of discrete-event dynamic systems, and a regulator which controls the operations of continuous-variable dynamic systems. The supervisor determines whether the system starts a maneuver or not, via a condition for a safety, and gives orders to the regulator for performing the maneuvers. And the regulator tracks the planned path generated in the supervisor. The conditions for a safe lane change maneuver are proposed using the velocity, the acceleration, and geometrical relationship of vehicles.

  • PDF

A Lane-change Collision Avoidance Algorithm for Autonomous Vehicles and HILS(Hardware-In-the-Loop Simulation) Test (자율주행 차량의 충돌회피 차선변경 제어 알고리즘 개발과 HILS 시험)

  • 류제하;김종협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.240-248
    • /
    • 1999
  • This paper presents a lane-change collision avoidance control algorithm for autonomous vehicles that will be used in AHS(Automated Highway System). In the proposed control algorithm, nominal control inputs are generated by solving the inverse vehicle dynamic equations of motion for a lane-change maneuver. In addition, a corrective steering input from preview as well as DYC (Direct Yaw Moment Control) may be included to reduce unpredictable errors and to insure yaw directional stability, respectively. The performance of the algorithm is evaluated with an ABS HILS system which consist of 17 DOF vehicle model and real ABS hardware parts. The HILS simulation results show that the proposed algorithm may be used for emergency lane-change maneuvers for autonomous vehicles.

  • PDF

The Review on working improvement of highway Buses only lane system (고속도로 버스전용차로제의 운영개선에 대한 고찰)

  • 조행래
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.4
    • /
    • pp.63-67
    • /
    • 2000
  • Presently, Weekend Buses only lane system is in force in Gyung-Bu Highway causes traffic delay at the northern of Su-won IC and have reduced the efficiency of Highway. To solve this problems, Buses only lane system is working at the northern of Su-won IC should be charged over from Median Buses only lane system to Curb Buses only lane system. It makes good effects on reducing weaving occurs when cars change lane, traffic accidents, ease control on violation cars, improving Level of Service in the Ramp, etc.

  • PDF

Throughput Analysis of Right Turn Shared Lane with Lane Width Change (차로폭에 따른 우회전 공용차로의 통과교통량분석)

  • 김동녕;김경환
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.17-31
    • /
    • 2003
  • This study is about throughput analysis of the shared right turn lane at signalized intersection with lane width change. It is expected that the increased width of the right turn shared lane causes to increase the volume of right turn on red(RTOR) In this study, the throughput computation is designed to take into account the lost time which is caused by the blocked right turn due to the stop of through traffic. The saturation flow rate of right turn using the rest of lane after through traffic stops is included as well. Results show that the different RTOR volume levels due to the various shared lane width leads to a difference in throughput. For the shared right turn lanes. throughput capacity for various lane widths is bigger than that of the KHCM as much as from 1.1 to 2.1 times.

LDWS Performance Study Based on the Vehicle Type (차량종류에 따른 LDWS 성능에 관한 연구)

  • Park, Hwan-Seo;Lee, Hong-Guk;Chang, Kyung-Jin;Yoo, Song-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.39-45
    • /
    • 2012
  • More than 80 percent of traffic accidents related with lane departure believed to be the result of crossing the lane due to either negligence or drowsiness of the driver. Lane-departure related accident in the highway usually involve high fatality. Even though LDWS is believed to prevent accident 25% and reduce fatalities by 15% respectively, its effectiveness in performance is yet to be confirmed in many aspects. In this study, the vehicle lateral locations relative to warning zone envelop (earliest and latest warning zone) defined in ISO standard, ECE and NHTSA regulations are compared with respect to various factors including delays, vehicle speed and vehicle heading angle with respect to the lane. Since LDWS is designed to be activated at the speed over 60 km/h, vehicle speed range for the study is set to be from 60 to 100 km/h. The vehicle heading angle (yaw angle) is set to be up to 5 degree away from the lane (abrupt lane change) considering standard for lane change test using double lane-change test specification. The TLC is calculated using factors like vehicle speed, yaw angle and reaction time. In addition, the effect of vehicle type has been considered to assess LDWS safety.

Real Time Road Lane Detection with RANSAC and HSV Color Transformation

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • Autonomous driving vehicle research demands complex road and lane understanding such as lane departure warning, adaptive cruise control, lane keeping and centering, lane change and turn assist, and driving under complex road conditions. A fast and robust road lane detection subsystem is a basic but important building block for this type of research. In this paper, we propose a method that performs road lane detection from black box input. The proposed system applies Random Sample Consensus to find the best model of road lanes passing through divided regions of the input image under HSV color model. HSV color model is chosen since it explicitly separates chromaticity and luminosity and the narrower hue distribution greatly assists in later segmentation of the frames by limiting color saturation. The implemented method was successful in lane detection on real world on-board testing, exhibiting 86.21% accuracy with 4.3% standard deviation in real time.

Lane Detection and Tracking Using Classification in Image Sequences

  • Lim, Sungsoo;Lee, Daeho;Park, Youngtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4489-4501
    • /
    • 2014
  • We propose a novel lane detection method based on classification in image sequences. Both structural and statistical features of the extracted bright shape are applied to the neural network for finding correct lane marks. The features used in this paper are shown to have strong discriminating power to locate correct traffic lanes. The traffic lanes detected in the current frame is also used to estimate the traffic lane if the lane detection fails in the next frame. The proposed method is fast enough to apply for real-time systems; the average processing time is less than 2msec. Also the scheme of the local illumination compensation allows robust lane detection at nighttime. Therefore, this method can be widely used in intelligence transportation systems such as driver assistance, lane change assistance, lane departure warning and autonomous vehicles.

Lane Change Methodology for Autonomous Vehicles Based on Deep Reinforcement Learning (심층강화학습 기반 자율주행차량의 차로변경 방법론)

  • DaYoon Park;SangHoon Bae;Trinh Tuan Hung;Boogi Park;Bokyung Jung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.276-290
    • /
    • 2023
  • Several efforts in Korea are currently underway with the goal of commercializing autonomous vehicles. Hence, various studies are emerging on autonomous vehicles that drive safely and quickly according to operating guidelines. The current study examines the path search of an autonomous vehicle from a microscopic viewpoint and tries to prove the efficiency required by learning the lane change of an autonomous vehicle through Deep Q-Learning. A SUMO was used to achieve this purpose. The scenario was set to start with a random lane at the starting point and make a right turn through a lane change to the third lane at the destination. As a result of the study, the analysis was divided into simulation-based lane change and simulation-based lane change applied with Deep Q-Learning. The average traffic speed was improved by about 40% in the case of simulation with Deep Q-Learning applied, compared to the case without application, and the average waiting time was reduced by about 2 seconds and the average queue length by about 2.3 vehicles.