• Title/Summary/Keyword: Landsat Thematic Mapper data

Search Result 47, Processing Time 0.025 seconds

Exploring and Testing Satellite Imagery to Historical Geography (위성영상의 문화역사지리학적 활용 가능성에 대한 탐색)

  • Chang, Eun-Mi;Park, Kyeong
    • Journal of the Korean Geographical Society
    • /
    • v.35 no.5
    • /
    • pp.745-754
    • /
    • 2000
  • Both Geographic Information System and Remote Sensing fields have been nearly neglected or ignored by historical geographers.This paper intends to show the potentiality of satellite images of various spatial reslutions to explore and to express themes of historical geography. Old Chinese maps and atlas were also used to relate the digital values and historical facfors. Advanced Very High Resolution Radiometer data might be used as a real image for a contintal scale to show changes in coastal shoreline. Landsat Thematic Mapper Imagery of Beijing showed some of boundaries of old palace. Finally IKONOS images of one meter resolution showed detailed information of landcover and landuse of the City, Beijing. The potential capability and limitation to apply satellite imagery in application of historical geography are also discussed.

  • PDF

Distribution of Surface Temperature and Chlorophyll-a in Lake Soyang using Remote Sensing Techniques (원격탐사기법에 의한 소양호의 표층수온과 엽록소 분포)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.177-183
    • /
    • 2000
  • The Landsat Thematic Mapper (TM) has suggested that spatial and spectral characteristics would be suited to evaluate water quality of lake. But, TM has not been commonly used for the analysis of in-land water quality, such as surface water temperature, chlorophyll-a, suspended sediments, and Secchi depth in domestic research. This paper summarizes the analysis of Landsat 5 - TM image collected on 22 Feb 1996 for evaluation of chlorophyll-a and surface temperature in the Lake Soyang. And, field measurements collected in the Lake Soyang were used to obtain water optical algorithms for calibration of satellite data. It is concluded that we can assess chlorophyll-a with remote sensing reflectance and surface temperature with thermal band in lake Soyang. However, surface temperature calculated with thermal band of Landsat TM are underestimated. Relationship between remote sensing reflectance and chlorophyll-a using the ratio of TM band 1 and band 3 is as follows; Y = 17.206 - 6.4711 * (Rrs(band1) / Rrs(band3)) $R^2$=0.8762 and, using the ratio of TM band 1 and band 2 as follows; Y = 57.77 - 35.771 * (Rrs(band1) / Rrs(band2)) $R^2$=0.8317.

  • PDF

Assessment of Trophic State for Daecheong reservoir Using Landsat TM Imagery Data (Landsat TM 영상자료를 이용한 대청호의 영양상태 평가)

  • Han, E.J.;Kim, K.T.;Jeong, D.H.;Cheon, S.Y.;Kim, S.J.;Yu, S.J.;Hwang, J.Y.;Kim, T.S.;Kim, M.H.
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.1
    • /
    • pp.81-91
    • /
    • 1998
  • The objective of this study was to use remotely sensed data, combined with in situ data, for the assessment of trophic state for Daecheong reservoir. Three Landsat TM(Thematic Mapper) imagery data were processed to portray trophic state conditions. The remotely sensed data and the measured data were obtained on 20 June 1995. Regression models have been developed between the chlorophyll-a concentration and reflectance which was converted to Landsat TM digital data. The regression model was determined based on the correlation coefficient which was higher than 0.7 and was applied to the entire study area to generate a distribution map of chlorophyll-a and trophic state. The equation, providing estimates of chlorophyll-a concentration, represented the year-to-year spatial variation of trophic zones in the reservoir. Satellite remote sensing data derived from Landsat TM had been successfully used for trophic slate mapping in Daecheong reservoir.

  • PDF

A Study on the Optical Image Method in the Extraction of Surface Cover Information for Hydrologic Analysis (수문해석(水文解析)을 위한 지표정보(地表情報) 추출(抽出)의 광학(光學) 이미지법(法)에 관한 연구(硏究))

  • Yang, In Tae;Chun, Byung Dog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.77-85
    • /
    • 1990
  • This report is a study concerning the classification of the surface cover data applying the data of LANDSAT TM (Thematic Mapper). The purpose of this study was to reduce the cost of use for LANDSAT data and increase the accuracy of land cover classification. Especially, a using mehtod adopted in this paper was a unique optical method using OHP(Over Head Projector). It was found that a unique optical method can have significant effects upon the responses according to the present results in this study.

  • PDF

A Study of The Extraction of Surface Cover Information of Chuncheon Basin by Remote Sensing Technology (원격심사(遠隔深査)에 의(依)한 춘천유역(春川流域)의 지표정보(地表情報) 추출(抽出)에 관(關)한 연구(硏究))

  • Yang, In Tae;Kim, Wook Nam
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.49-56
    • /
    • 1990
  • This report is a study concerning the classiffication of the surface cover data applying the data of Landsat TM(Thematic Mapper). The purpose of this study was to reduce the cost of use for Landst data and increase the accuracy of land cover classiffication. Especially, A method used in this paper was a unique optical method using Over Head Projector. It is found that a unique optical method can have significant effects upon the responses according to the present results in this study.

  • PDF

Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image

  • Chun, Jung Hwa;Lim, Jong-Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.591-601
    • /
    • 2007
  • Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.

Kansas Vegetation Mapping Using Multi-Temporal Remote Sensing Data: A Hybrid Approach (계절별 위성자료를 이용한 미국 캔자스주 식생 분류 - 하이브리드 접근방식의 적용 -)

  • ;Stephen Egbert;Dana Peterson;Aimee Stewart;Chris Lauver;Kevin Price;Clayton Blodgett;Jack Cully, Jr,;Glennis Kaufman
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.667-685
    • /
    • 2003
  • To address the requirements of gap analysis for species protection, as well as the needs of state and federal agencies for detailed digital land cover, a 43-class map at the vegetation alliance level was created for the state of Kansas using multi-temporal Thematic Mapper imagery. The mapping approach included the use of three-date multi-seasonal imagery, a two-stage classification approach that first masked out cropland areas using unsupervised classification and then mapped natural vegetation with supervised classification, visualization techniques utilizing a map of small multiples and field experts, and extensive use of ancillary data in post-hoc processing. Accuracy assessment was conducted at three levels of generalization (Anderson Level I, vegetation formation, and vegetation alliance) and three cross-tabulation approaches. Overall accuracy ranged from 51.7% to 89.4%, depending on level of generalization, while accuracy figures for individual alliance classes varied by area covered and level of sampling.

The Management of Lake Water Quality by Remote Sensing Technology -On the Extraction of Environmental Factors in North Han River Basin- (리모트센싱 기법을 이용한 호소수질 관리방안 -북한강 수계의 환경인자 추출을 중심으로-)

  • Yang, In Tae;Kim, Heung Kyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.161-170
    • /
    • 1994
  • Traditional methods for the extraction of the environmental factors of waters in which environmental change is severer than in the land can not examine closely the changed phenomena because of the lack of equipments, manpower, time and cost, etc. Therefore, new practical and efficient methods are required. The research for the method to manage environment of the waters with remote sensing technology was needed. This study examined the interrelations between the data by an on-the-spot survey and Landsat TM data and presented the model for extracting factors of water quality with regression analysis and experimental formula.

  • PDF

Monitoring of Lake Water Quality Using LANDSAT TM Imagery Data (LANDSAT TM 영상자료를 이용한 호수 수질 관측)

  • Kim, Tae-Geun;Kim, Kwang-Eun;Cho, Gi-Sung;Kim, Hwan-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.23-33
    • /
    • 1996
  • The conventional monitoring of water quality constrained by time and equipment produce neither complete nor synoptic geographic coverage of pollutant distribution, transport, and water quality. To circumvent these limitations in temporal and spatial measurements, the use of remote sensing is increasingly being involved in the lacustrine environmental research. Consequently, satellite remote sensing, with its synoptic coverage, is used to obtain the eutrophication-related water quality parameters in Daecheong reservoir in this study. The approach involved acquisition of water quality samples from boats of 15 sites on 20 June 1995 and 30 sites on 18 March 1996, simultaneous with Landsat-5 satellite overpass. Regression models have been developed between the water quality parameters and Landsat Thematic Mapper(TM) digital data. The best regression model was determined based on the correlation coefficient which was higher than 0.6. As a result, satellite remote sensing can provide meaningful information on water quality parameters. The regression models developed in this study show good relationship for transparency, turbidity, SS, and chlorophyll, but not for TN and TP because their spectral characteristics are not well defined.

  • PDF

Evaluating Green Network based on Pixel of Landsat TM Satellite Image (Landsat TM 위성영상 픽셀 기반의 녹지 연계망 평가)

  • Lee, Dong-Youn;Um, Jung-Sup
    • Spatial Information Research
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2010
  • At present, monitoring programmes for green network have been mainly based on field sampling, which relies on attributes of an area at one point in time, reflecting an emphasis on the small number of in-situ data. One of the major disadvantages of traditional field monitoring is that it is costly, laborious and time consuming due to the large number of samples required. The aim of this research was to evaluate green network based on pixel of Landsat TM satellite image. An empirical study for a case study site was conducted to demonstrate how a standard remote sensing technology can be used to assist in monitoring the green network based on pixel. The pixel-based analysis made it possible to identify area-wide patterns of green network subject to many different type of artificial structures, which cannot be acquired by traditional field sampling. It was demonstrated that the degradation trends of green network could be used effectively as an indicator to restrict further development of the sites since the quantitative data generated from remote sensing can present area-wide visual evidences by permanent record. It is anticipated that this research output could be used as a valuable reference to support more scientific and objective decision-making in monitoring green network.