• Title/Summary/Keyword: Landsat TM Image

Search Result 249, Processing Time 0.027 seconds

A Study on Classifications of Remote Sensed Multispectral Image Data using Soft Computing Technique - Stressed on Rough Sets - (소프트 컴퓨팅기술을 이용한 원격탐사 다중 분광 이미지 데이터의 분류에 관한 연구 -Rough 집합을 중심으로-)

  • Won Sung-Hyun
    • Management & Information Systems Review
    • /
    • v.3
    • /
    • pp.15-45
    • /
    • 1999
  • Processing techniques of remote sensed image data using computer have been recognized very necessary techniques to all social fields, such as, environmental observation, land cultivation, resource investigation, military trend grasp and agricultural product estimation, etc. Especially, accurate classification and analysis to remote sensed image da are important elements that can determine reliability of remote sensed image data processing systems, and many researches have been processed to improve these accuracy of classification and analysis. Traditionally, remote sensed image data processing systems have been processed 2 or 3 selected bands in multiple bands, in this time, their selection criterions are statistical separability or wavelength properties. But, it have be bring up the necessity of bands selection method by data distribution characteristics than traditional bands selection by wavelength properties or statistical separability. Because data sensing environments change from multispectral environments to hyperspectral environments. In this paper for efficient data classification in multispectral bands environment, a band feature extraction method using the Rough sets theory is proposed. First, we make a look up table from training data, and analyze the properties of experimental multispectral image data, then select the efficient band using indiscernibility relation of Rough set theory from analysis results. Proposed method is applied to LANDSAT TM data on 2 June 1992. From this, we show clustering trends that similar to traditional band selection results by wavelength properties, from this, we verify that can use the proposed method that centered on data properties to select the efficient bands, though data sensing environment change to hyperspectral band environments.

  • PDF

Effect on the Temperature in Forest Dominant Vegetation Change (산림 우점식생 변화가 온도에 미치는 영향)

  • An, Mi-Yeon;Hong, Suk-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • This study investigated the effect of forest type changes in Daegu, the hottest city in Korea, on the land surface temperature (LST). The LST change by forest type was analyzed by 2scene of Landsat TM image from 1990 to 2007. The land cover types were classified into 4 types; forest areas, urban areas, cultivated areas and other areas, and water areas. The forest areas were further classified into the coniferous tree areas and the broadleaf tree areas. The result of the statistical analysis of the LST change according to the forest type showed that the LST increased when the forest was changed to the urban area. The LST increased by about $0.6^{\circ}C$ when a broadleaf tree area was changed to an urban area and about $0.2^{\circ}C$ when a coniferous tree area was changed to an urban area. This was the temperature change as the result of the simple type change for 17 years. The temperature change was larger when considering both cases of the forest type being retained and changed. The LST increased by $2.3^{\circ}C$ more when the broadleaf tree areas were changed to the urban areas than when broadleaf trees were maintained. The LST increased by $1.9^{\circ}C$ more when the coniferous tree areas were changed to the urban areas than when the coniferous tree areas were maintained. The LST increased by $0.4^{\circ}C$ more when the broadleaf tree areas were destroyed than when the coniferous tree areas were destroyed. The results confirmed that the protection of broadleaf trees in urban forests was more effective for mitigating climate change.

The Use of Satellite Image for Uncertainty Analysis in Flood Inundation Mapping (홍수범람도 불확실성 해석을 위한 인공위성사진의 활용)

  • Jung, Younghun;Ryu, Kwanghyun;Yi, Choongsung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.549-557
    • /
    • 2013
  • An flood inundation map is able to convey spatial distribution of inundation to a decision maker for flood risk management. A roughness coefficient with unclear values and a discharge obtained from the stage-discharge rating equation are key sources of uncertainty in flood inundation mapping by using a hydraulic model. Also, the uncertainty analysis needs an observation for the flood inundation, and satellite images is useful to obtain spatial distribution of flood. Accordingly, the objective of this study is to quantify uncertainty arising roughness and discharge in flood inundation mapping by using a hydraulic model and a satellite image. To perform this, flood inundations were simulated by HEC-RAS and terrain analysis, and ISODATA (Iterative Self-Organizing Data Analysis) was used to classify waterbody from Landsat 5TM imagery. The classified waterbody was used as an observation to calculate F-statistic (likelihood measure) in GLUE (Generalized Likelihood Uncertainty Estimation). The results from GLUE show that flood inundation areas are 74.59 $km^2$ for lower 5 % uncertainty bound and 151.95 $km^2$ for upper 95% uncertainty bound, respectively. The quantification of uncertainty in flood inundation mapping will play a significant role in realizing the efficient flood risk management.

A Study on Atmospheric Correction in Satellite Imagery Using an Atmospheric Radiation Model (대기복사모형을 이용한 위성영상의 대기보정에 관한 연구)

  • Oh, Sung-Nam
    • Atmosphere
    • /
    • v.14 no.2
    • /
    • pp.11-22
    • /
    • 2004
  • A technique on atmospheric correction algorithm to the multi-band reflectance of Landsat TM imagery has been developed using an atmospheric radiation transfer model for eliminating the atmospheric and surface diffusion effects. Despite the fact that the technique of satellite image processing has been continually developed, there is still a difference between the radiance value registered by satellite borne detector and the true value registered at the ground surface. Such difference is caused by atmospheric attenuations of radiance energy transfer process which is mostly associated with the presence of aerosol particles in atmospheric suspension and surface irradiance characteristics. The atmospheric reflectance depend on atmospheric optical depth and aerosol concentration, and closely related to geographical and environmental surface characteristics. Therefore, when the effects of surface diffuse and aerosol reflectance are eliminated from the satellite image, it is actually corrected from atmospheric optical conditions. The objective of this study is to develop an algorithm for making atmospheric correction in satellite image. The study is processed with the correction function which is developed for eliminating the effects of atmospheric path scattering and surface adjacent pixel spectral reflectance within an atmospheric radiation model. The diffused radiance of adjacent pixel in the image obtained from accounting the average reflectance in the $7{\times}7$ neighbourhood pixels and using the land cover classification. The atmospheric correction functions are provided by a radiation transfer model of LOWTRAN 7 based on the actual atmospheric soundings over the Korean atmospheric complexity. The model produce the upward radiances of satellite spectral image for a given surface reflectance and aerosol optical thickness.

Digital Change Detection by Post-classification Comparison of Multitemporal Remotely-Sensed Data

  • Cho, Seong-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.367-373
    • /
    • 2000
  • Natural and artificial land features are very dynamic, changing somewhat repidly in our lifetime. It is important that such changes are inventoried accurately so that the physical and human processes at work can be more fully understood. Change detection is a technique used to determine the change between two or more time periods of a particular object of study. Change detection is an important process in monitoring and managing natural resources and urban development because it provides quantitative analysis of the spatial distribution in the population of interest. The purpose of this research is to detect environmental changes surrounding an area of Mountain Moscow, Idaho using Landsat Thematic Maper (TM) images of (July 8, 1990 and July 20, 1991). For accurate classification, the Image enhancement process was performed for improving the image quality of each image. A SPOT image (Aug. 14, 1992) was used for image merging in this research. Supervised classification was performed using the maximum likelihood method. Accuracy assessments were done for each classification. Two images were compared on a pixel-by-pixel basis using the post-classification comparison method that is used for detecting the changes of the study area in this research. The 'from-to' change class information can be detected by post classification comparison using this method and we could find which class change to another.

Stand Volume Estimation of Pinus Koraiensis Using Landsat TM and Forest Inventory (Landsat TM 영상과 현장조사를 이용한 잣나무림 재적 추정)

  • Park, Jin-Woo;Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.80-90
    • /
    • 2014
  • The objective of this research is to estimate the stand volume of Pinus koraiensis, by using the investigated volume and the information of remote sensing(RS), in the research forest of Kangwon National University. The average volume of the research forest per hectare was $307.7m^3/ha$ and standard deviation was $168.4m^3/ha$. Before and after carrying out 3 by 3 majority filtering on TM image, eleven indices were extracted each time. Independent variables needed for linear regression equation were selected using mean pixel values by indices. The number of indices were eleven: six Bands(except for thermal Band), NDVI, Band Ratio(BR1:Band4/Band3, BR2:Band5/Band4, BR3:Band7/Band4), Tasseled Cap-Greeness. As a result, NDVI and TC G were chosen as the most suitable indices for regression before and after filtering, and R-squared was high: 0.736 before filtering, 0.753 after filtering. As a result of error verification for an exact comparison, RMSE before and after filtering was about $69.1m^3/ha$, $67.5m^3/ha$, respectively, and bias was $-12.8m^3/ha$, $9.7m^3/ha$, respectively. Therefore, the regression conducted with filtering was selected as an appropriate model because of low RMSE and bias. The estimated stand volume applying the regression was $160,758m^3$, and the average volume was $314m^3/ha$. This estimation was 1.2 times higher than the actual stand volume of Pinus koraiensis.

Identifying Urban Spatial Structure through GIS and Remote Sensing Data -The Case of Daegu Metropolitan Area- (지리정보시스템과 원격탐사자료를 이용한 도시공간구조의 파악 -대구광역권 사례연구-)

  • Kim, Jae-Ik;Kwon, Jin-Hwi
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.2
    • /
    • pp.44-51
    • /
    • 2009
  • The main purpose of this study is to identify urban spatial structure by applying geographic information system and remote sensing data. This study identifies the urban spatial structure of non-megalopolis by analyzing the spatial distribution of population and employment in the case of Daegu metropolitan area. For this purpose, multi-temporal satellite image data (Landsat TM; 1995, 2000 and 2005) were utilized through the geographic information system. The distance-decay estimations in terms of population and employment density show that Daegu region as a whole shows monocentric urban characteristics. However, some evidences of polycentricism such as low explanation power of monocentric urban model, rises in multiple employment centers, decentralization of employment are emerging.

  • PDF

Forecast of Land use Change for Efficient Development of Urban-Agricultural city (도농도시의 효율적 개발을 위한 토지이용변화예측)

  • Kim, Se-Kun;Han, Seung-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • This study attempts to analyze changes in land use patterns in a compound urban and agricultural city Kimje-si, using LANDSAT TM imagery and to forecast future changes accordingly. As a new approach to supervised classification, HSB(Hue, Saturation, Brightness)-transformed images were used to select training zones, and in doing so classification accuracy increased by more than 5 percent. Land use changes were forecasted by using a cellular automaton algorithm developed by applying Markov Chain techniques, and by taking into account classification results and GIS data, such as population of the pertinent region by area, DEMs, road networks, water systems. Upon comparing the results of the forecast of the land use changes, it appears that geographical features had the greatest influence on the changes. Moreover, a forecast of post-2030 land use change patterns demonstrates that 21.67 percent of mountain lands in Kimje-si is likely to be farmland, and 13.11 percent is likely to become city areas. The major changes are likely to occur in small mountain lands located in the heart of the city. Based on the study result, it seems certain that forecasting future land use changes can help plan land use in a compound urban and agricultural city to procure food resources.

Landsat TM Based Land-cover Analysis of Cholwon (South Korea) and Wonsan (North Korea)

  • Song, Moo-Young;Park, Jong-Oh;Shin, Kwang-Soo;Yu, Young-Chul
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • The land-cover of two regions of South and North Korea included in one Landsat TM scene was investigated by comparing different seasons and different band data over the multiple land-cover types. The relationships between the intensities of two bands in the 2-D plot are mainly linear in band2 versus band1 and band3 versus band1, polygonal sporadic in band5 versus band1 and band7 versus band1, and almost tri-polarized in band4 versus band3. The 2-D plot of band4/band3 shows the best capability to discriminate different main land-cover such as water, vegetation and dry soil. Some discriminations are not clear between city and dry field, or mountain and plain field in the scene of September. The digital number data of band4 from vegetated zones show stronger reflectance in September rather than April, while other band values tend to be lager in April than in September over each land-cover. NDVI presents high value in both regions in September. However the image of Wonsan area in April suggests weak vigor of vegetation in comparison with Cholwon area. Band ratios are very effective in eliminating the influence of the complex topography. The proper pairing of the band ratio improved the discrimination capability of the land-cover; band5/band2 for dry soil, band4/band3 for vegetation and band1/band7 for the water. The RGB combination of the three band ratio pairs showed the best results in the discrimination of the land-cover of Wonsan, Cholwon and even the Demilitarized Zone.

Extraction of the aquaculture farms information from the Landsat- TM imagery of the Younggwang coastal area

  • Shanmugam, P.;Ahn, Yu-Hwan;Yoo, Hong-Ryong
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.493-498
    • /
    • 2004
  • The objective of the present study is to compare various conventional and recently evolved satellite image-processing techniques and to ascertain the best possible technique that can identify and position of aquaculture farms accurately in and around the Younggwang coastal area. Several conventional techniques performed to extract such information fiom the Landsat-TM imagery do not seem to yield better information about the aquaculture farms, and lead to misclassification. The large errors between the actual and extracted aquaculture farm information are due to existence of spectral confusion and inadequate spatial resolution of the sensor. This leads to possible occurrence of mixture pixels or 'mixels' of the source of errors in the classification techniques. Understanding the confusing and mixture pixel problems requires the development of efficient methods that can enable more reliable extraction of aquaculture farm information. Thus, the more recently evolved methods such as the step-by-step partial spectral end-member extraction and linear spectral unmixing methods are introduced. The farmer one assumes that an end-member, which is often referred to as 'spectrally pure signature' of a target feature, does not appear to be a spectrally pure form, but always mix with the other features at certain proportions. The assumption of the linear spectral unmxing is that the measured reflectance of a pixel is the linear sum of the reflectance of the mixture components that make up that pixel. The classification accuracy of the step-by-step partial end-member extraction improved significantly compared to that obtained from the traditional supervised classifiers. However, this method did not distinguish the aquaculture ponds and non-aquaculture ponds within the region of the aquaculture farming areas. In contrast, the linear spectral unmixing model produced a set of fraction images for the aquaculture, water and soil. Of these, the aquaculture fraction yields good estimates about the proportion of the aquaculture farm in each pixel. The acquired proportion was compared with the values of NDVI and both are positively correlated (R$^2$ =0.91), indicating the reliability of the sub-pixel classification.ixel classification.

  • PDF