• Title/Summary/Keyword: Landsat ETM+

Search Result 221, Processing Time 0.023 seconds

Analysis on the Snow Cover Variations at Mt. Kilimanjaro Using Landsat Satellite Images (Landsat 위성영상을 이용한 킬리만자로 만년설 변화 분석)

  • Park, Sung-Hwan;Lee, Moung-Jin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.409-420
    • /
    • 2012
  • Since the Industrial Revolution, CO2 levels have been increasing with climate change. In this study, Analyze time-series changes in snow cover quantitatively and predict the vanishing point of snow cover statistically using remote sensing. The study area is Mt. Kilimanjaro, Tanzania. 23 image data of Landsat-5 TM and Landsat-7 ETM+, spanning the 27 years from June 1984 to July 2011, were acquired. For this study, first, atmospheric correction was performed on each image using the COST atmospheric correction model. Second, the snow cover area was extracted using the NDSI (Normalized Difference Snow Index) algorithm. Third, the minimum height of snow cover was determined using SRTM DEM. Finally, the vanishing point of snow cover was predicted using the trend line of a linear function. Analysis was divided using a total of 23 images and 17 images during the dry season. Results show that snow cover area decreased by approximately $6.47km^2$ from $9.01km^2$ to $2.54km^2$, equivalent to a 73% reduction. The minimum height of snow cover increased by approximately 290 m, from 4,603 m to 4,893 m. Using the trend line result shows that the snow cover area decreased by approximately $0.342km^2$ in the dry season and $0.421km^2$ overall each year. In contrast, the annual increase in the minimum height of snow cover was approximately 9.848 m in the dry season and 11.251 m overall. Based on this analysis of vanishing point, there will be no snow cover 2020 at 95% confidence interval. This study can be used to monitor global climate change by providing the change in snow cover area and reference data when studying this area or similar areas in future research.

An Efficient Method to Estimate Land Surface Temperature Difference (LSTD) Using Landsat Satellite Images (Landsat 위성영상을 이용한 지표온도차 추정기법)

  • Park, Sung-Hwan;Jung, Hyung-Sup;Shin, Han-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.197-207
    • /
    • 2013
  • Difficulties of emissivity determination and atmospheric correction degrade the estimation accuracy of land surface temperature (LST). That is, since the emissivity determination of land surface material and the correction of atmospheric effect are not perfect, it is very difficult to estimate the precise LST from a thermal infrared image such as Landsat TM and ETM+, ASTER, etc. In this study, we propose an efficient method to estimate land surface temperature difference (LSTD) rather than LST from Landsat thermal band images. This method is based on the assumptions that 1) atmospheric effects are same over a image and 2) the emissivity of vegetation region is 0.99. To validate the performance of the proposed method, error sensitive analysis according to error variations of reference land surface temperature and the water vapor is performed. The results show that the estimated LSTD have respectively the errors of ${\pm}0.06K$, ${\pm}0.15K$ and ${\pm}0.30K$ when the water vapor error of ${\pm}0.302g/cm^2$ and the radiance differences of 0.2, 0.5 and $1.0Wm^{-2}sr^{-1}{\mu}m$ are considered. And also the errors of the LSTD estimation are respectively ${\pm}0.037K$, ${\pm}0.089K$, ${\pm}0.168K$ in the reference land surface temperature error of ${\pm}2.41K$. Therefore, the proposed method enables to estimate the LSTD with the accuracy of less than 0.5K.

Deforestation Patterns Analysis of the Baekdudaegan Mountain Range (백두대간지역의 산림훼손경향 분석)

  • Lee, Dong-Kun;Song, Won-Kyong;Jeon, Seong-Woo;Sung, Hyun-Chan;Son, Dong-Yeob
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.41-53
    • /
    • 2007
  • The Baekdudaegan Mountain Range is a backbone of the Korean Peninsula which carries special spiritual and sentimental signatures for Koreans as well as significant ecological values for diverse organisms. However, in spite of importance of this region, the forests of Baekdudaegan have been damaged in a variety of human activities by being used as highland vegetable grower, lumber region, grass land, and bare land, and are still undergoing destruction. The existing researches had determined the details of the damage through on-site and recent observations. Such methods cannot provide quantitative and integrated analysis therefore could not be utilized as objective data for the ecological conservation of Baekdudaegan forests. The goal of this study is to quantitatively analyze the forest damage in the Baekdudaegan preservation region through land cover categorization and change detection techniques by using satellite images, which are 1980s, and 1990s Landsat TM, and 2000s Landsat ETM+. The analysis was executed by detecting land cover changed areas from forest to others and analyzing changed areas' spatial patterns. Through the change detection analysis based on land cover classification, we found out that the deforested areas were approximately three times larger after the 1990s than from the 1980s to the 1990s. These areas were related to various topographical and spatial elements, altitude, slope, the distance form road, and water system, etc. This study has the significance as quantitative and integrated analysis about the Baekdudaegan preservation region since 1980s. These results could actually be utilized as basic data for forest conservation policies and the management of the Baekdudaegan preservation region.

URBAN ENVIRONMENTAL QUALITY ANALYSIS USING LANDSAT IMAGES OVER SEOUL, KOREA

  • Lee, Kwon-H.;Wong, Man-Sing;Kim, Gwan-C.;Kim, Young-J.;Nichol, Janet
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.556-559
    • /
    • 2007
  • The Urban Environmental Quality (UEQ) indicates a complex and various parameters resulting from both human and natural factors in an urban area. Vegetation, climate, air quality, and the urban infrastructure may interact to produce effects in an urban area. There are relationships among air pollution, vegetation, and degrading environmental the urban heat island (UHI) effect. This study investigates the application of multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air quality and UHI intensity in Seoul from 2000 to 2006 in fine resolution (30m) using the emissivity-fusion method. The Haze Optimized Transform (HOT) correction approach has been adopted for atmospheric correction on all bands except thermal band. The general UHI values (${\Delta}(T_{urban}-T_{rural})$) are 8.45 (2000), 9.14 (2001), 8.61 (2002), and $8.41^{\circ}C$ (2006), respectively. Although the UHI values are similar during these years, the spatial coverage of "hot" surface temperature (>$24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84(2002), and 0.89 (2006), respectively. Air quality is shown to be an important factor in the spatial variation of UEQ. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

  • PDF

An Quantitative Analysis of Severity Classification and Burn Severity for the Large Forest Fire Areas using Normalized Burn Ratio of Landsat Imagery (Landsat 영상으로부터 정규탄화지수 추출과 산불피해지역 및 피해강도의 정량적 분석)

  • Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.80-92
    • /
    • 2007
  • Forest fire is the dominant large-scale disturbance mechanism in the Korean temperate forest, and it strongly influences forest structure and function. Moreover burn severity incorporates both short- and long-term post-fire effects on the local and regional environment. Burn severity is defined by the degree to which an ecosystem has changed owing to the fire. Vegetation rehabilitation may specifically vary according to burn severity after fire. To understand burn severity and process of vegetation rehabilitation at the damaged area after large-fire is required a lot of man powers and budgets. However the analysis of burn severity in the forest area using satellite imagery can acquire rapidly information and more objective results remotely in the large-fire area. Space and airbone sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. For classifying fire damaged area and analyzing burn severity of Samcheok fire area occurred in 2000, Cheongyang fire in 2002, and Yangyang fire in 2005 we utilized Normalized Burn Ratio(NBR) technique. The NBR is temporally differenced between pre- and post-fire datasets to determine the extent and degree of change detected from burning. In this paper we use pre- and post-fire imagery from the Landsat TM and ETM+ imagery to compute the NBR and evaluate large-scale patterns of burn severity at 30m spatial resolution. 65% in the Samcheok fire area, 91% in the Cheongyang fire area and 65% in the Yangyang fire area were corresponded to burn severity class above 'High'. Therefore the use of a remotely sensed Differenced Normalized Burn Ratio(${\Delta}NBR$) by RS and GIS allows for the burn severity to be quantified spatially by mapping damaged domain and burn severity across large-fire area.

  • PDF

Analysis on the Spatial Characteristics Caused by the Cropland Increase Using Multitemporal Landsat Images in Lower Reach of Duman River, Northeast Korea (다시기 위성영상을 이용한 두만강 하류지역의 농경지 개간의 공간적 특성분석)

  • Lee, Min-Boo;Han, Uk;Kim, Nam-Shin;Han, Ju-Youn;Shin, Keun-Ha;Kang, Chul-Sung
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.4
    • /
    • pp.630-639
    • /
    • 2003
  • This study aims to analysis the distribution and change of cropland and forest, the Onseong, Saebyeol, and Eundeok counties on the lower reach of Duman(Tumen) river, northeast Korea, using 1992 year Landsat TM data, 2000 year Landsat ETM data, and digital terrain elevation data(DTED). Land cover and land use of the study areas are classified into cropland, forest, village, and water body, using the supervised classification method including 1:50,000 DTED analysis, image band composition, and principal component analysis(PCA). Results of quantitative analysis present that each growth rate of cropland of Onseong and Eundeok are 22.8% and 14.7% corresponding to decreasing rates of forest, 8% and 13.6% during 8 years from 1992 to 2000. In Onseong, Saebyeol, and Eundeok, each values of mean elevations and slope gradients increased to 192m, 95m, and 91m from 157m, 85m, and 78m, and to 6.6$^{\circ}$, 3.0$^{\circ}$, and 4.4$^{\circ}$ from 5.2$^{\circ}$, 2.5$^{\circ}$, and 3.0$^{\circ}$. Especially, in case of newly developed cropland, the values of mean elevation and mean gradient have 225m, 122m, and 127m, and 9.4$^{\circ}$, 5.1$^{\circ}$, and 8.0$^{\circ}$, in above three regions. These new croplands were developing along to deeper valleys and toward lower hill and mountain slope up to knickpoint zone of gradient change. Deforested lands for cropland have formed irregular pattern of patch-type, and become sources for the sheet erosion, rilling and gulleying in mountain slope and sedimentation in local river channel. Though there were no field checking, analysis using landsat images and GIS mapping can help understand actual environmental problems relating to cropland development of mountain slope in North Korea.

Impact of Temperature Distributions on Forest and Vegetation in Jeiu Island with Remote Sensing Data

  • Lee Byung-Gul;Kang In-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.293-296
    • /
    • 2006
  • 본 연구에서는 Landsat 7 ETM+위성영상을 이용하여 제주도의 표면온도분포를 구하여 제주도의 식생 분포와 비교해 보았다. 계산결과 온도분포는 제주의 남쪽지역이 북쪽보다 약$3^{\circ}C$정도 높게 나타났으며, 이러한 온도분포로 인하여 제주도의 남쪽에는 활엽수가 북쪽보다 침엽수가 대체적으로 많이 분포하였으며, 나무의 성장과 관련된 나무목의 둘레가 대체적으로 굵게은 것으로 나타났다. 이러한 경향으로 보아 제주도의 경우 같은 고도의 남쪽과 북쪽의 온도분포가 다르게 나타나며, 이러한 영향으로 인해 한라산 식생분포특성이 달라지는 것으로 판단되었다.

  • PDF

CROP MANAGEMENT SYSTEM BASED ON HIGH SPATIAL RESOLUTION IMAGES

  • Kim Seong Joon;Kwon Hyung Joong;Park GeunAe;Lee Mi Seon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.257-259
    • /
    • 2005
  • A crop management system was developed using Visual Basic and ArcGIS VBA. The system is operated on ArcGlS 8.3 with Microsoft Access MOB. Landsat +ETM, KOMPSAT-l EOC, ASTER VNIR and IKONOS panchromatic (pan) and multi-spectral (MIS) images were included in the system to understand what kind of agriculture-related information can be extracted for each images. Agriculture related data inventories using crop cover information such as texture and average pixel value of the crop based on cultivation calendar were designed ,and implemented. Three IKONOS images (May 25,2001, December 25,2001, October 23,2003) were loaded in the system to show crop cover characteristics such as rice, pear, grape, red pepper, garlic, and surface water cover of reservoir with field surveys. GIS layers such as DEM (Digital Elevation Model), stream, road, soil, land use and administration boundary were also supplied and can be overlaid with images to enhance the understanding the general agricultural characteristics and identifying the location easily.

  • PDF

STUDY ON PREPARING FOREST DISASTER MAP USING GISANDRS

  • Jo Myung-Hee;Song Wan-Young
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.687-690
    • /
    • 2005
  • Recently there have been a lot of kinds of damages in forest area such as forest fires, forest pest, landslide so that the efficient methods to mange those information and the way to face them are deadly needed. In this study, there were preparing the various vegetation index map and comparing them with the field surveying the tried to figure out which vegetation index algorism is the best proper to present forest fire damaged area. These all were based on Landsat ETM+ satellite image (2000.10.16). The result of this study is to select the high correlation algorism among the various vegetation indexes and then construct the forest fire disaster map, the case of forest fires damaged area.

  • PDF

POTENTIAL OF HYPERSPECTRAL DATA FOR THE CLASSIFICA TION OF VITD SOIL CLASSES

  • Kim Sun-Hwa;Ma Jung-Rim;Lee Kyu-Sung;Eo Yang-Dam;Lee Yong-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.221-224
    • /
    • 2005
  • Hyperspectral image data have great potential to depict more detailed information on biophysical characteristics of surface materials, which are not usually available with multispectral data. This study aims to test the potential of hyperspectral data for classifying five soil classes defined by the vector product interim terrain data (VITD). In this study, we try to classify surface materials of bare soil over the study area in Korea using both hyperspectral and multispectral image data. Training and test samples for classification are selected with using VITD vector map. The spectral angle mapper (SAM) method is applied to the EO-I Hyperion data and Landsat ETM+ data, that has been radiometrically corrected and geo-rectified. Higher classification accuracy is obtained with the hyperspectral data for classifying five soil classes of gravel, evaporites, inorganic silt and sand.

  • PDF