DOI QR코드

DOI QR Code

An Efficient Method to Estimate Land Surface Temperature Difference (LSTD) Using Landsat Satellite Images

Landsat 위성영상을 이용한 지표온도차 추정기법

  • 박숭환 (서울시립대학교 공간정보공학과) ;
  • 정형섭 (서울시립대학교 공간정보공학과) ;
  • 신한섭 (중앙항업 기술사업팀)
  • Received : 2013.03.19
  • Accepted : 2013.04.19
  • Published : 2013.04.30

Abstract

Difficulties of emissivity determination and atmospheric correction degrade the estimation accuracy of land surface temperature (LST). That is, since the emissivity determination of land surface material and the correction of atmospheric effect are not perfect, it is very difficult to estimate the precise LST from a thermal infrared image such as Landsat TM and ETM+, ASTER, etc. In this study, we propose an efficient method to estimate land surface temperature difference (LSTD) rather than LST from Landsat thermal band images. This method is based on the assumptions that 1) atmospheric effects are same over a image and 2) the emissivity of vegetation region is 0.99. To validate the performance of the proposed method, error sensitive analysis according to error variations of reference land surface temperature and the water vapor is performed. The results show that the estimated LSTD have respectively the errors of ${\pm}0.06K$, ${\pm}0.15K$ and ${\pm}0.30K$ when the water vapor error of ${\pm}0.302g/cm^2$ and the radiance differences of 0.2, 0.5 and $1.0Wm^{-2}sr^{-1}{\mu}m$ are considered. And also the errors of the LSTD estimation are respectively ${\pm}0.037K$, ${\pm}0.089K$, ${\pm}0.168K$ in the reference land surface temperature error of ${\pm}2.41K$. Therefore, the proposed method enables to estimate the LSTD with the accuracy of less than 0.5K.

복사율 및 대기효과는 대상지표의 온도 추정에 오차를 발생시키는 주요 원인이 된다. 일반적인 경우, 대상지표에 대한 정확한 복사율 정보를 알 수 없으므로, 단일밴드로 이루어진 열적외선영상으로부터 대상지표의 정확한 온도를 추정하는 것은 매우 어렵다. 따라서, 본 연구에서는 대상지표의 온도를 추정하기보다는 Landsat 위성영상을 이용한 지표 간 지표온도차 추정기법을 제안하고자 한다. 연구를 위하여 대기효과가 전체영상에 동일하게 적용된다고 가정하였다. 수분량 및 온도의 오차로부터 제안된 기법에 대한 오차분석을 수행하였다. 오차분석 결과, 수분량의 오차범위가 ${\pm}0.302g/cm^2$일 때, 제안된 기법의 오차는 복사휘도차이가 0.2, 0.5 및 $1.0Wm^{-2}sr^{-1}{\mu}m$일 때 각각 약 ${\pm}0.06K$, ${\pm}0.15K$, ${\pm}0.30K$임을 보였다. 또한, 온도의 오차가 ${\pm}2.41K$일 때, 온도차의 오차범위는 복사휘도차이가 0.2, 0.5 및 $1.0Wm^{-2}sr^{-1}{\mu}m$일 때 각각 약 ${\pm}0.037K$, ${\pm}0.089K$, ${\pm}0.168K$이고, 온도의 오차가 ${\pm}0.56K$일 때에는 약 ${\pm}0.008K$, ${\pm}0.020K$, ${\pm}0.038K$의 오차가 있음을 보였다. 이는 제안된 기법이 높은 정밀도로 지표 간 지표온도차를 추정할 수 있음을 의미한다.

Keywords

References

  1. Buttler, B., 1998. Precipitable water at the VLA - 1990-1998, VLA Scientific Memo, 176.
  2. Chavez, P.S., 1996. Image-based atmospheric corrections-revisited and improved, Photogrammetric Engineering and Remote Sensing, 62(9): 1025-1036.
  3. Gillespie, A., S. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook and A. B. Kahle, 1998. A Temperature and Emissivity Separation Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images, IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1113-1126. https://doi.org/10.1109/36.700995
  4. Hong, S.H., J.H. Kim and J.S. Ha, 2010. Possibility of applying infrared background threshold values for detecting asian dust in spring from geostationary satellite, Korean Journal of Remote Sensing, 26(4): 387-394. https://doi.org/10.7780/kjrs.2010.26.4.387
  5. Jimenez-Munoz, J.C. and J.A. Sobrino, 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data, Journal of Geophysical Research, 108: 4688-4695. https://doi.org/10.1029/2003JD003480
  6. Lee, S.-H. and S.-H. Yun, 2011. Impact Meteorological Wind Fields Acerage on Predicting Volcanic Tephra Dipersion of Mt. Baekdu, Journal of the Korean Earth Science Society, 32(4): 360-372 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2011.32.4.360
  7. Li, Z. L. and F. Becker, 1993. Feasibility of land surface temperature and emissivity determination from AVHRR data, Remote Sensing of Environment, 43: 67-85. https://doi.org/10.1016/0034-4257(93)90065-6
  8. Li, Z.L., B.H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.F. Trigo and J. A. Sobrino, 2013. Satellitederived land surface temperature: Current status and perspectives, Remote Sensing of Environment, 131: 14-37. https://doi.org/10.1016/j.rse.2012.12.008
  9. McMillin, L.M., 1975. Estimation of sea surface temperature from two infrared window measurements with different absorptions, Journal of Geophysical Research, 80: 5113-5117. https://doi.org/10.1029/JC080i036p05113
  10. Ottle, C and M. Stroll, 1993. Effect of atmospheric absorption and surface emissivity of the determination of land surface temperature from infrared satellite data, International Journal of Remote Sensing, 14: 2025-2037. https://doi.org/10.1080/01431169308954018
  11. Park, W., Y.-K. Lee, J.-S. Won, S.-G. Lee, J.-M. Kim, 2008. A basic study for the retrieval of surface temperature from single channel middle-infrared images, Korean Journal of Remote Sensing, 24(2): 189-194 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2008.24.2.189
  12. Park, W., J.-S. Won, H.-S. Jung, 2013. Retrieval of Relative Surface Temperature from Single-channel Middle-infrared (MIR) Images, Korean Journal of Remote Sensing, 29(1): 95-104 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.1.9
  13. Qin, Z., A. Karnieli and P. Berliner, 2001. A monowindow algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region, International Journal of Remote Sensing, 22(18): 3719-3746. https://doi.org/10.1080/01431160010006971
  14. Sobrino, J.A., V. Caselles and F. Becker, 1990. Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard, ISPRS Journal of Photogrammetry and Remote Sensing, 44(6): 343-354. https://doi.org/10.1016/0924-2716(90)90077-O
  15. Sobrino, J.A., Z.L. Li, M.P. Stoll and F. Becker, 1994. Improvements in the Split-Window Technique for Land Surface Temperature Determination, IEEE Transactions on Geoscience and Remote Sensing, 32(2): 243-253. https://doi.org/10.1109/36.295038
  16. Sobrino, J.A. and N. Raissouni, 2000. Toward remote sensing methods for land cover dynamic monitoring: application to Morrocco, International Journal of Remote Sensing, 21: 353-366. https://doi.org/10.1080/014311600210876
  17. Sobrino, J.A., J.C. Jimenez-Munoz and L. Paolini, 2004. Land surface temperature retrieval from LANDSAT TM 5, Remote Sensing of Environment, 90: 434-440. https://doi.org/10.1016/j.rse.2004.02.003
  18. Vidal, A., 1991. Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data, International Journal of Remote Sensing, 12: 2449-2460. https://doi.org/10.1080/01431169108955279
  19. Wu, J., Y. Ming, Y.M. Liu, S. Qi and S. Yuan, 2003. A study on the micro-earthquake swarm occurring on Aug. 20, 2002 in Changbaishan Tianchi volcano, Seismological and Geomagnetic Observation and Research, 24: 1-8. (in Chinese).
  20. Yoon, S., J.-H. Ryu, J.-E. Min, Y.-H. Ahn, S. Lee and J.-S. Won, 2009. Monitoring of the Sea Surface Temperature in the Saemangeum Sea Area Using the Thermal Infrared Satellite Data, Korean Journal of Remote Sensing, 25(4): 339-357 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2009.25.4.339
  21. Zhukov, B., E. Lorenz, D. Oertel, M. Wooster and G. Roberts, 2006. Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001-2004), Remote Sensing of Environment, 100: 29-51. https://doi.org/10.1016/j.rse.2005.09.019

Cited by

  1. vol.29, pp.5, 2013, https://doi.org/10.7780/kjrs.2013.29.5.1
  2. Application of Landsat images to Snow Cover Changes by Volcanic Activities at Mt. Villarrica and Mt. Llaima, Chile vol.30, pp.3, 2014, https://doi.org/10.7780/kjrs.2014.30.3.1
  3. A Study on Establishment of Appropriate Observation Time for Estimation of Daily Land Surface Temperature using COMS in Korea Peninsula vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.037
  4. LANDSAT 영상을 이용한 세종특별자치시의 도시화와 열섬현상 분석 vol.34, pp.3, 2013, https://doi.org/10.12652/ksce.2014.34.3.1033
  5. 핫스팟 분석을 이용한 도시열섬 취약지 특성 분석 - 전주시를 대상으로 - vol.48, pp.5, 2013, https://doi.org/10.9715/kila.2020.48.5.067
  6. 천리안2A호를 이용한 다목적실용위성3A호 중적외선 밝기 온도 편향오차 개선 가능성 연구 vol.48, pp.12, 2013, https://doi.org/10.5139/jksas.2020.48.12.977