DOI QR코드

DOI QR Code

Analysis on the Snow Cover Variations at Mt. Kilimanjaro Using Landsat Satellite Images

Landsat 위성영상을 이용한 킬리만자로 만년설 변화 분석

  • Park, Sung-Hwan (Department of Geoinformatics, The University of Seoul) ;
  • Lee, Moung-Jin (Korea Adaptation Center for Climate Change, Korea Environment Institute) ;
  • Jung, Hyung-Sup (Department of Geoinformatics, The University of Seoul)
  • 박숭환 (서울시립대학교 공간정보공학과) ;
  • 이명진 (한국환경정책평가연구원 국가기후변화적응센터) ;
  • 정형섭 (서울시립대학교 공간정보공학과)
  • Received : 2012.07.05
  • Accepted : 2012.08.20
  • Published : 2012.08.31

Abstract

Since the Industrial Revolution, CO2 levels have been increasing with climate change. In this study, Analyze time-series changes in snow cover quantitatively and predict the vanishing point of snow cover statistically using remote sensing. The study area is Mt. Kilimanjaro, Tanzania. 23 image data of Landsat-5 TM and Landsat-7 ETM+, spanning the 27 years from June 1984 to July 2011, were acquired. For this study, first, atmospheric correction was performed on each image using the COST atmospheric correction model. Second, the snow cover area was extracted using the NDSI (Normalized Difference Snow Index) algorithm. Third, the minimum height of snow cover was determined using SRTM DEM. Finally, the vanishing point of snow cover was predicted using the trend line of a linear function. Analysis was divided using a total of 23 images and 17 images during the dry season. Results show that snow cover area decreased by approximately $6.47km^2$ from $9.01km^2$ to $2.54km^2$, equivalent to a 73% reduction. The minimum height of snow cover increased by approximately 290 m, from 4,603 m to 4,893 m. Using the trend line result shows that the snow cover area decreased by approximately $0.342km^2$ in the dry season and $0.421km^2$ overall each year. In contrast, the annual increase in the minimum height of snow cover was approximately 9.848 m in the dry season and 11.251 m overall. Based on this analysis of vanishing point, there will be no snow cover 2020 at 95% confidence interval. This study can be used to monitor global climate change by providing the change in snow cover area and reference data when studying this area or similar areas in future research.

산업혁명 이후 대기 중 이산화탄소 농도는 증가하고 있으며 이는 기후변화로 나타나고 있다. 본 연구에서는 기후변화에 의한 영향을 파악하기 위하여 원격탐사를 이용하여 만년설의 시계열 변화를 정량적으로 분석하고, 종설되는 시점을 통계적으로 예측하고자 한다. 연구지역은 아프리카 탄자니아의 킬리만자로 만년설이다. 1984년 6월부터 2011년 7월까지 전체 27년간 23장의 Landsat-5 TM 및 Landsat-7 ETM+ 자료를 사용하였다. 연구를 위하여 첫째, COST 대기보정 모델을 이용하여 각 영상들의 대기보정을 수행하였다. 둘째, NDSI(Normalized Difference Snow Index) 알고리즘을 이용하여 만년설 면적을 추출하였다. 셋째, SRTM DEM을 이용하여 만년설의 최저고도를 추출하였다. 마지막으로, 일차함수 형태의 추세선을 활용하여 종설 시점을 예측하였다. 분석은 23장 전부를 활용한 것과 건기에 촬영된 17장만을 활용한 것으로 나누어 분석하였다. 분석결과 면적은 27년 동안 약 $9.01km^2$에서 약 $2.54km^2$로 약 $6.47km^2$ 감소하였고, 이는 약 73% 면적의 감소를 의미한다. 최저고도는 27년 동안 약 4,603 m에서 4,893 m로 약 290 m 상승하였다. 추세선을 활용한 결과 면적은 매년 건기에 $0.342km^2$, 전체적으로 $0.421km^2$씩 감소하고 있으며, 최저고도는 매년 건기에 9.848 m, 전체적으로 11.251 m씩 상승하고 있는 것으로 나타났다. 면적 감소량을 통해 종설 시점을 예측한 결과 95% 신뢰도에서 2020년에 완전히 사라질 것으로 분석되었다. 이 연구는 적설지역의 변화를 통하여 전 지구의 기후변화를 모니터링할 수 있다는 근거를 제시했으며, 향후 연구지역 또는 유사 지역의 만년설 현황을 파악하는데 참고 자료로서 활용될 수 있을 것이다.

Keywords

References

  1. 염종민, 한경수, 이가람, 2009. 적설역에서 나타나는 적외 휘도온도와 반사도 특성, 대한원격탐사학회지, 25(2): 193-203. https://doi.org/10.7780/kjrs.2009.25.2.193
  2. Agrawala, S., A. Moehner, A. Hemp, M. van Aalst, S. Hitz, J. Smith, H. Meena, S.M. Mwakifwamba, T. Hyera, and O.U. Mwaipopo, 2003. Development and climate change in Tanzania: focus on Mountain Kilimanjaro, COM/ENV/EPOC/DCD/DAC (2003)5/FINAL. Organisation for Economic Co-operation and Development, Paris, France.
  3. Bamber, J.L. and J.A. Dowdeswell, 1990. Remotesensing studies of Kvitoyjokulen, an ice cap on Kvitoya, North-east Svalbard, Journal of Glaciology, 36(122): 75-81. https://doi.org/10.1017/S002214300000558X
  4. Bindschadler, R., J.A. Dowdeswell, D. Hall, and J.G. Winther, 2001. Glaciological applications with Landsat-7 imagery: Early assessments, Remote Sensing of Environment, 78(1-2): 163-179. https://doi.org/10.1016/S0034-4257(01)00257-7
  5. Bolch, T., 2007. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data, Global and Planetary Change, 56(1-2): 1-12. https://doi.org/10.1016/j.gloplacha.2006.07.009
  6. Braithwaite, R.J., 2002. Glacier mass balance: the first 50 years of international monitoring, Progress in Physical Geography, 26(1): 76-95. https://doi.org/10.1191/0309132502ph357pr
  7. Chavez, P.S., 1996. Image-based atmospheric corrections revisited and improved, American Society for Photogrammetry and Remote Sensing, 62: 1025-1036.
  8. Fujita, K., L.G. Thompson, Y. Ageta, and T. Yasunari, 2006. Thirty-year history of glacier melting in the Nepal Himalayas, Journal of Geophysical Research, 111: 1-6.
  9. Gao, B.C., W. Han, S.C. Tsay, and N.F. Larsen, 1998. Cloud detection over the Arctic region using airborne imaging spectrometer data during the daytime, Journal of Applied Meteorology, 37: 1421-1429. https://doi.org/10.1175/1520-0450(1998)037<1421:CDOTAR>2.0.CO;2
  10. Hall, D.K., W.M. Kovalick, and A.T.C. Chang, 1990. Satellite-derived reflectance of snow-covered surfaces in Northern Minnesota, Remote Sensing of Environment, 33: 87-96. https://doi.org/10.1016/0034-4257(90)90035-K
  11. Hemp, A., 2001a. Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro. Part II: Habitat selection, Plant Biology, 3: 493-523. https://doi.org/10.1055/s-2001-17729
  12. Hemp, A., 2005. Climate change driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro, Global Change Biology, 11: 1013-1023. https://doi.org/10.1111/j.1365-2486.2005.00968.x
  13. IPCC, 2007. Climate Change 2007 _Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.I. Parry, O.F. Canziani, J.P. Patulikof, P.J. van der Linden, and C.E. Hanson, Cambridge University Press, Cambridge, UK.
  14. Kaser, G. and C. Georges, 1999. On the mass balance of low latitude glaciers with particular consideration of the Peruvian Cordillera Blance, Geografiska Annaler, 81A(4): 643-652.
  15. Klein, A.G. and B.L. Isacks, 1999. Spectral mixture analysis of Landsat thematic mapper images applied to the detection of the transient snowline on tropical Andean glaciers, Global and Planetary Change, 22: 139-154. https://doi.org/10.1016/S0921-8181(99)00032-6
  16. Noble, I.R., 1993. A model of the responses of ecotones to climate change, Ecological Applications, 3(3): 396-403. https://doi.org/10.2307/1941908
  17. Nolin, A.W., 1998. Mapping the Martian polar ice caps; Applications of terrestrial optical remote sensing methods, Journal of Geophysical Research, 103: 851-864.
  18. Ostrem, G. and M. Brugman, 1991. Glacier massbalance measurements: a manual for field and office work, NHRI Science Report No. 4: 224.
  19. Paul, F., A. Kaab, M. Maisch, T. Kellenberger, and W. Haeberli, 2004. Rapid disintegration of Alpine glaciers observed with satellite data, Geophysical Research Letters, 31: 1-4.
  20. Riggs, G.A., D.K. Hall, and V.V. Salomonson, 1994. A snow index for the Landsat Thematic Mapper and moderate resolution imaging spectroradiometer, Proceedings of 1994 International Geoscience and Remote Sensing Symposium(IGARSS), Pasadena, California, USA, Aug. 8-12, pp. 1942-1944.
  21. Silverio, W. and J.M. Jaquet, 2005. Glacial cover mapping (1987-1996) of the Cordillera Blanca (Peru) using satellite imagery, Remote Sensing of Environment, 95: 342-350. https://doi.org/10.1016/j.rse.2004.12.012
  22. Thompson, L.G., E. Mosley-Thompson, and M.E. Davis, 2002. Kilimanjaro ice core records: evidence of holocene climate change in tropical Africa, Science, 298: 589-593. https://doi.org/10.1126/science.1073198
  23. WGMS, 2008. Global glacier changes: facts and figures, M. Zemp, I. Roer, A. Kaab, M. Hoelzle, F. Paul, W. Haeberli, University of Zurich Press, Zurich, Swiss.

Cited by

  1. Study of Snow Depletion Characteristics at Two Mountainous Watersheds Using NOAA AVHRR Time Series Data vol.29, pp.3, 2013, https://doi.org/10.7780/kjrs.2013.29.3.4
  2. vol.29, pp.5, 2013, https://doi.org/10.7780/kjrs.2013.29.5.1
  3. Application of Landsat images to Snow Cover Changes by Volcanic Activities at Mt. Villarrica and Mt. Llaima, Chile vol.30, pp.3, 2014, https://doi.org/10.7780/kjrs.2014.30.3.1
  4. Estimation of Water Quality using Landsat 8 Images for Geum-river, Korea vol.48, pp.2, 2015, https://doi.org/10.3741/JKWRA.2015.48.2.79
  5. Multi-temporal Analysis of Deforestation in Pyeongyang and Hyesan, North Korea vol.32, pp.1, 2016, https://doi.org/10.7780/kjrs.2016.32.1.1
  6. Unchanged risk of frost exposure for subalpine and alpine plants after snowmelt in Switzerland despite climate warming vol.62, pp.9, 2018, https://doi.org/10.1007/s00484-018-1578-3
  7. Oil Spill Detection from RADARSAT-2 SAR Image Using Non-Local Means Filter vol.33, pp.1, 2012, https://doi.org/10.7780/kjrs.2017.33.1.6
  8. Landsat TM/ETM+ 위성영상을 활용한 칠레 Southern Volcanic Zone의 화산과 적설변화와의 상관성 연구 vol.33, pp.3, 2017, https://doi.org/10.7780/kjrs.2017.33.3.4
  9. A 3000-year record of vegetation changes and fire at a high-elevation wetland on Kilimanjaro, Tanzania vol.99, pp.None, 2012, https://doi.org/10.1017/qua.2020.76