An Quantitative Analysis of Severity Classification and Burn Severity for the Large Forest Fire Areas using Normalized Burn Ratio of Landsat Imagery

Landsat 영상으로부터 정규탄화지수 추출과 산불피해지역 및 피해강도의 정량적 분석

  • Won, Myoung-Soo (Division of Forest Fire, Korea Forest Research Institute) ;
  • Koo, Kyo-Sang (Division of Forest Fire, Korea Forest Research Institute) ;
  • Lee, Myung-Bo (Division of Forest Fire, Korea Forest Research Institute)
  • 원명수 (국립산림과학원 산불연구과) ;
  • 구교상 (국립산림과학원 산불연구과) ;
  • 이명보 (국립산림과학원 산불연구과)
  • Received : 2007.08.13
  • Accepted : 2007.09.06
  • Published : 2007.09.30


Forest fire is the dominant large-scale disturbance mechanism in the Korean temperate forest, and it strongly influences forest structure and function. Moreover burn severity incorporates both short- and long-term post-fire effects on the local and regional environment. Burn severity is defined by the degree to which an ecosystem has changed owing to the fire. Vegetation rehabilitation may specifically vary according to burn severity after fire. To understand burn severity and process of vegetation rehabilitation at the damaged area after large-fire is required a lot of man powers and budgets. However the analysis of burn severity in the forest area using satellite imagery can acquire rapidly information and more objective results remotely in the large-fire area. Space and airbone sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. For classifying fire damaged area and analyzing burn severity of Samcheok fire area occurred in 2000, Cheongyang fire in 2002, and Yangyang fire in 2005 we utilized Normalized Burn Ratio(NBR) technique. The NBR is temporally differenced between pre- and post-fire datasets to determine the extent and degree of change detected from burning. In this paper we use pre- and post-fire imagery from the Landsat TM and ETM+ imagery to compute the NBR and evaluate large-scale patterns of burn severity at 30m spatial resolution. 65% in the Samcheok fire area, 91% in the Cheongyang fire area and 65% in the Yangyang fire area were corresponded to burn severity class above 'High'. Therefore the use of a remotely sensed Differenced Normalized Burn Ratio(${\Delta}NBR$) by RS and GIS allows for the burn severity to be quantified spatially by mapping damaged domain and burn severity across large-fire area.

산불은 우리나라 산림의 주요 교란요소중의 하나로써 산림 구조와 기능에 매우 큰 영향을 미치며, 산불피해강도에 따라 피해 후 식생회복 과정이 달라질 수 있다. 대형산불 피해지의 피해강도와 식생회복 과정을 파악하기 위해서는 많은 인력과 예산이 필요하지만 위성영상자료를 이용한 산불피해지의 피해강도 분석은 신속한 정보는 물론 대규모 피해지의 객관적인 결과를 원격적으로 취득할 수 있다. 위성과 항공기 탑재 센서들은 피해규모를 맵핑하고 진행산불 특성을 평가하며 산불피해후의 생태적 영향 특성을 규명하는데 활용되고 있다. 본 연구에서는 2000년 삼척산불, 2002년 청양산불 그리고 2005년 양양 대형산불 피해지를 구분하고 피해강도를 정량적으로 분석하기 위해 정규탄화지수(Normalized Burn Ratio: NBR)를 활용하였다. 본 연구를 위해 산불피해 전후 동일시기의 Landsat 위성영상 자료를 활용하여 정규탄화지수(NBR)를 산출하고 30m 해상도의 피해강도 패턴을 평가하였다. 산불피해강도 평가결과, 삼척산불 피해지는 피해강도 '중' 이상(${\Delta}NBR$ 152 이상) 지역이 전체의 65%를 차지하였으며 청양 예산산불피해지는 91%, 양양산불피해지는 65%로 나타나 3지역 중 청양 예산지역이 피해강도 측면에서만 보면 가장 큰 피해를 입은 것으로 분석되었다. 따라서 RS와 GIS를 이용하여 원격 탐지된 ${\Delta}NBR$은 대규모 산불피해지의 구분은 물론 산불피해강도를 공간적으로 정량화할 수 있다.