• Title/Summary/Keyword: Landmines

Search Result 17, Processing Time 0.033 seconds

Design and Feasibility Study of a Tracked Robot for Landmine Detection (지뢰탐지를 위한 궤도로봇의 설계와 가능성 연구)

  • Lee, Sang-Ho;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.68-72
    • /
    • 2009
  • Millions of landmines still have been buried in various countries around the world. Unfortunately, landmines make the correct detection of humanitarian organizations very difficult. For this purpose, new technologies such as improved sensors, efficient manipulators and mobile robots are needed. Our effort is to develop a small mobile robot for landmine detection. The mobile robot consists of sensor module, GPS, RF communications equipment, IR camera, motors, and controllers, etc. This paper describes the current configuration of development in landmine detecting tracked robot. Specifically we are concerned with the sensor module of the mobile robot. Our results show that graphs have measured a small metal instead of a real landmine because of the big danger of students experiments on detection with real landmines.

A Study on the Distinction of Landmine Detection Using 6 Step Creativity of the TRIZ (트리즈의 6단계 창의성을 이용한 지뢰탐지 판별에 관한 연구)

  • Lee, Sang-Ho;Lee, Seung-Hoon;Hwang, Soon-Woong;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1163-1170
    • /
    • 2010
  • Landmines are a humanitarian challenge because they indiscriminately kill and maim civilians. Landmines are weapons that cannot distinguish between a soldier and a civilian, and they remain active for decades. As a result, most of the victims of mines are innocent men, women and children. For this purpose, new technologies such as a methode of landmine detection and mobile robots are needed. Our effort is to develop a small mobile robot for landmine detection, to detect landmine and to explore the landmine distinguishable method. In this paper, Specifically we detected landmines using electromagnetic sensors and distinguished metals from M14 antipersonnel mines under the ground using 6 step creativity of the TRIZ. Therefore, we proposed new method of landmine detection using the TRIZ.

Landmine Detection System using a Target-adaptive Window Selection Method (표적 적응형 윈도우 기법을 적용한 지뢰 탐지 시스템)

  • Kim, Min Ju;Kim, Seong-Dae;Paeng, Kyunghyun;Hahm, Jong-Hun;Han, Seung-Hoon;Lee, Seung-Eui
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.201-208
    • /
    • 2014
  • The performance of a landmine detection system depends on consistent extractions of the features of landmines. Since landmines have diverse sizes, it is critical to select an appropriate window size to represent the landmine region consistently. Conventional detection systems are incapable of extracting consistent landmine features because they employ fixed window sizes. This paper proposes a window size selection method according to the size of a landmine. The proposed method selects an appropriate window size based on the type of a landmine estimated from the response signal of the system. Data on various types of soils and landmines were generated from a simulation program to evaluate the performance of the proposed method. The results verified that the proposed method, which employs an adaptive window size, yields a better landmine detection rate than the conventional methods, which employ fixed window sizes.

Deep-Learning-Based Mine Detection Using Simulated Data (시뮬레이션 데이터 기반으로 학습된 딥러닝 모델을 활용한 지뢰식별연구)

  • Buhwan Jeon;Chunju Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.4
    • /
    • pp.16-21
    • /
    • 2023
  • Although the global number of landmines is on a declining trend, the damages caused by previously buried landmines persist. In light of this, the present study contemplates solutions to issues and constraints that may arise due to the improvement of mine detection equipment and the reduction in the number of future soldiers. Current mine detectors lack data storage capabilities, posing limitations on data collection for research purposes. Additionally, practical data collection in real-world environments demands substantial time and manpower. Therefore, in this study, gprMax simulation was utilized to generate data. The lightweight CNN-based model, MobileNet, was trained and validated with real data, achieving a high identification rate of 97.35%. Consequently, the potential integration of technologies such as deep learning and simulation into geographical detection equipment is highlighted, offering a pathway to address potential future challenges. The study aims to somewhat alleviate these issues and anticipates contributing to the development of our military capabilities in becoming a future scientific and technological force.

  • PDF

Clearance Depth Control of Non-explosive Demining System (비폭파식 지뢰제거 시스템의 작업 깊이 제어)

  • Jeong, Hae-Kwan;Choi, Hyun-Do;Kim, Sang-Do;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.749-754
    • /
    • 2004
  • Up to now, non-explosive demining system adaptable to a mobile robot has been developed. This system has much smaller platform and consists of non-explosive mechanism. Brief experiment indoors showed thai developed demining system can remove landmines well. But, out of doors, some problems are detected i.e. Inclination of overall system causes a suspension of rake rotation. In this research, a study on performance improvement of developed non-explosive demining system is mainly discussed. To compensate the inclination of the system, mechanical sensor composed of shaft and spring is used. This sensor gives a signal to a leadscrew motor and controls a rotating direction. From an experiment, it is confirmed that the mechanical sensor as stated is a good solution of the inclination of the system.

  • PDF

Clearance Depth Control for the Non-explosive Demining System of a Tracked Mobile Robot (비폭파식 지뢰제거 무한궤도형 주행 로봇의 작업 깊이 제어)

  • Jeong Hae Kwan;Choi Hyun Do;Kim Sang Do;Kwak Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.155-161
    • /
    • 2005
  • Up to now, a lot of unmanned demining systems have been developed. However, some inferiority surely exist by reason of their large platform and explosive mechanism. To settle this inferiority, non-explosive demining system adaptable to a mobile robot already has been developed. Brief experiment indoors showed that developed demining system can remove landmines well. But, out of doors, several problems are detected. In this research, a study on the performance improvement of developed non-explosive demining system is mainly discussed. To overcome downhill effect, mechanical sensor composed of shaft and spring is used. It is confirmed that clearance depth control using the mechanical sensor is a good solution for the inclination of the system.

Field Application of Land Mine Crater using HPFRCC and ERCO (HPFRCC 및 ERCO를 활용한 지뢰매설호 현장적용)

  • Lee, Jea-Hyeon;Lee, Jong-Tae;Jung, Ung-Seon;Jo, Sung-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.90-91
    • /
    • 2017
  • Military camps deal with various types of explosives. For instance, military engineering unit conducts education and training for laying landmines. However, in case of land mine craters installed with regular-level RC, structural safety may be in danger thus there is a necessity to utilize High Performance Fiber-Reinforced Cement Composites (HPFRCC), which has high functionality in protection and blast resistance. Therefore, in this research we conducted an field application of land mine crater of HPFRCC, using the existing optimal fiber mixing ratio and ERCO addition ratio.

  • PDF

Antipersonnel Landmine Detection Using Ground Penetrating Radar

  • Shrestha, Shanker-Man;Arai, Ikuo;Tomizawa, Yoshiyuki;Gotoh, Shinji
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1064-1066
    • /
    • 2003
  • In this paper, ground penetrating radar (GPR), which has the capability to detect non metal and plastic mines, is proposed to detect and discriminate antipersonnel (AP) landmines. The time domain GPR - Impulse radar and frequency domain GPR - SFCW (Stepped Frequency Continuous Wave) radar is utilized for metal and non-metal landmine detection and its performance is investigated. Since signal processing is vital for target reorganization and clutter rejection, we implemented the MUSIC (Multiple Signal Classification) algorithm for the signal processing of SFCW radar data and SAR (Synthetic Aperture Radar) processing method for the signal processing of Impulse radar data.

  • PDF

Ground Penetrating Radar based Hand-held Landmine Detection System using Frequency Shifting Filtering (주파수 이동 필터링을 적용한 지면 투과 레이더 기반 휴대용 지뢰 탐지 시스템)

  • Hahm, Jong-Hun;Kim, Min Ju;Heo, Eun Doo;Kim, Seong-Dae;Kim, Dong Hyun;Choi, Soon-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.74-84
    • /
    • 2017
  • Since a soldier manages a hand-held landmine detector by hands, it is necessary to develop a system that can detect the target quickly and accurately. However, the hand-held landmine detector used in Korea has a problem that it can only detect the metal mines. Therefore, it is important to solve the problem and to develop a hand-held landmine detection system suitable for the Korean environment. In this paper, we propose a hand-held landmine detection system suitable for the Korean environment using ground penetrating radar. The proposed system uses depth compensation, matched filtering, and frequency shifting filtering for preprocessing. Then, in the detection step, the system detects the target using the edge ratio. In order to evaluate the proposed system, we buried landmines in sandy loam which is most of the soil in Korea and obtained a set of ground penetrating radar data by using a hand-held landmine detector. By using the obtained data, we carried out some experiments on the size and position of the patch and the shifting frequency to find the optimal parameter values and measured the detection performance using the optimized values. Experimental results show that the proposed preprocessing algorithms are suitable for detecting all landmines at low false alarm rate and the performance of the proposed system is superior to that of previous works.

The Future of Countermobility Capability with a Literature Analysis from FASCAM to Terrain Shaping Obstacle(TSO) (미래 대기동 작전 능력의 발전방안 연구 -살포식지뢰(FASCAM)로부터 지형 조성 장애물(TSO) 전력을 중심으로-)

  • Park, Byoung-Ho;Sim, Jaeseong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.291-298
    • /
    • 2021
  • In this study, the future of countermobility capability is presented by analyzing the status of the countermobility obstacles focusing on the history of landmines and munitions. The conventional landmine was forbidden globally by the CCW and Ottawa Treaty because it caused civilian damage after the war. Because the inhumanity of those mines had been acknowledged, shatterable mines with a self-destruct (SD) function and M93 "HORNET" anti-tank munition with enhanced sensors have been fielded. In 2016, the Obama administration announced a policy that banned all antipersonnel landmines, leaving a considerable gap in the countermobility capability. To deal with these problems, the developments of "SAVO" and the SLEP program of Volcano mines were conducted. In the sense of a long-term approach, the countermobility obstacles, including mines, were chosen as fundamental forces for Multi-Domain Operations and were improved to Terrain Shaping Obstacles (TSO). TSO has improved sensors and mobility kill capabilities and features an enhanced remote control over each munition on the battlefield through a network established with satellite communication. The combined arms countermobility might be fully capable until 2050 if the TSO program can be completed successfully.