• Title/Summary/Keyword: Landing System

Search Result 461, Processing Time 0.024 seconds

Control of powered descent phase for a Lunar lander using PID controller (PID 제어기를 이용한 달착륙선의 powered descent phase 유도제어)

  • Jo, Sung-Jin;Min, Chan-Oh;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.408-415
    • /
    • 2011
  • The moon landing is composed of the de-orbit descent phase, powered descent phase, and the powered descent phase is divide into 3-sub phase of the braking, approach, final landing phase. In this paper, the lunar lander perform landing control using 3-sub phase of optimal trajectory. First, generate the reference trajectory using gauss pseudo-spectral method. Thereafter generate PID controller using altitude and velocity error in each direction. Finally the lunar lander landing system constitute using the Simulink of Matlab, and perform simulation.

The Study of Strategy for Energy Dissipation During Drop Landing from Different Heights (드롭랜딩 시 높이 변화에 따른 인체 분절의 충격흡수 전략에 관한 연구)

  • Cho, Joon-Haeng;Koh, Young-Chul;Lee, Dae-Yeon;Kim, Kyoung-Hun
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • The purpose of current study was to investigate the effects of the heights on the lower extremities, torso and neck segments for energy dissipation during single-leg drop landing from different heights. Twenty eight young healthy male subjects(age: $23.21{\pm}1.66yr$, height: $176.03{\pm}4.22cm$, weight: $68.93{\pm}5.36kg$) were participated in this study. The subjects performed the single-leg drop landing from the various height(30, 45 & 60 cm). Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. The results were as follows. First, the ROM at the ankle, knee, hip and trunk was increased with the increased heights but the ROM at the neck was increased in the 60cm. Second, the angular velocity, moment and eccentric work at the ankle, knee, hip, trunk, and neck was increased with the increased heights. Third, the contribution to total work at the knee joint was not significantly different, while the ankle joint rate was decreased and hip and neck rate was increased in the 60cm, and trunk rate was increased with the increased heights. Lastly, the increase in landing height was able to augment the level of energy dissipation not only at the lower extremities but also at the trunk and neck. The findings showed that drop landing affect trunk and neck with lower extremity joints. Therefore, we need to consider that trunk and neck strengthening including stability should be added to reduce sports injury during prevention training.

Deploy Position Determination for Accurate Parachute Landing of a UAV (무인기의 정밀 낙하산 착륙을 위한 전개지점 결정)

  • Kim, Inhan;Park, Sanghyuk;Park, Woosung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.465-472
    • /
    • 2013
  • In this paper, we suggest how to determine the parachute deploy position for accurate landing of a UAV at a desired position. The 9-DOF dynamic modeling of UAV-parachute system is required to construct the proposed algorithm based on neural network nonlinear function approximation technique. The input and output data sets to train the neural network are obtained from simulation results using UAV-parachute 9-DOF model. The input data consist of the deploy position, UAV's velocity, and wind velocity. The output data consist of the cross range and down range of landing positions. So we predict the relative landing position from the current UAV position. The deploy position is then determined through distance compensations for the relative landing positions from the desired landing position. The deploy position is consistently calculated and updated.

Design of Digital Transmitter and Receiver Modules in ILS (항공 계기착륙 디지털 송수신 모듈 설계)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.264-271
    • /
    • 2011
  • ILS(Instrument Landing System) is the international standard system for approach and landing guidance. ILS was adopted by ICAO(International Civil Aviation Organization) in 1947 and is currently being used in commercial systems. To design the digital transmitter and receiver modules that can be mounted in the integrated ILS, we propose the digital design methods of digital double AM modulator and demodulator using FPGA chip, DDS(Direct Digital Synthesizer) for generation of sampling clock, demodulator of DDC(Digital Down Converter) structure, and spectrum analyzer using DSP chip. We demonstrate the efficiency of the proposed design method through experiments using developed transmitter and receiver modules. This system can be used as a high-performance commercial system.

A Robust Longitudinal Landing Controller to Datalink Time Delay (데이터링크 시간지연에 강건한 종운동 착률제어기 설계)

  • Lee, Sang-Hyo;Rhee, Ihn-Seok;Kee, Chang-Don;Koo, Hueon-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • This paper deals with designing a ground-based longitudinal landing controller which is robust to datalink time delays. Time delays occur because forward velocity measurements are downlinked and the controller output commands are uplinked. An $H_{\infty}$ controller was designed by using the input/output decomposition where time delay is modeled as a first-order system with Pade approximation. Linear simulations show that the system tracks well the predefined path and is robust to the variation of time delay.

Dynamic Characteristics Analysis of Landing Gear that Consider 6-Degree of Freedom of Helicopter (6자유도를 고려한 회전익 항공기 착륙장치의 동특성 해석)

  • Park, Wansoo;Hwang, Jaeup;Hyun, Youngho;Hwang, Jaehyuk;bae, Jaeseoung;Kim, Taewook
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, full body modeling and analysis of nose and main landing gear's characteristics of a helicopter are performed using the dynamics analysis program ADAMS. Also, when land limiting about helicopter body's degree-of-freedom, compared the characteristics. In the case of helicopter, because there are a lot of dangerous missions under flight condition that is disadvantageous than fixed wing airplane, need more detailed research for a helicopter.

  • PDF

ACN Estimation for Medium-class Aircraft (중형수송기 Aircraft Classification Number 예측)

  • Chung, Jin-Deog;Bae, Joong-Won;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.34-38
    • /
    • 2010
  • ACN(Aircraft Classification Number) is allocated by marketing group during early stage of aircraft design phase and is a critical parameter to decide whether the designed aircraft can be landed or not in a certain airport. The loading on the main landing gear wheels, selection of main landing gear tire and estimation of ACNs for flexible and rigid pavements were done for the proposed medium-class aircraft. The estimated ACN values are compared with the similar class aircraft. And PCN(Pavement Classification Number) values of airport in Korea are surmmarized. Results showed that the currently proposed medium-class aircraft can land any airport in Korea.

  • PDF

A Study on the Control Methods for Aircraft Automatic Landing System (항공기 자동착륙시스템을 위한 제어기법에 관한 연구)

  • Jung, Do-Hee;Eun, Hee-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.2
    • /
    • pp.81-99
    • /
    • 1994
  • 최근 항공기 착륙시스템을 자동화하려는 노력이 활발히 진행되고 있다. 제어이론의 발달에 따라 최적제어, 적응제어, 지능제어와 같은 최신제어이론을 적용하여 Blind Landing System의 개발에 박차를 가하고 있다. 본 연구에서는 ILS로부터 나오는 신호를 받아 정해진 Glide Path를 추종하고 또한 일정고도에 도달하면 플래어하여 안전하게 접지할 수 있도록 하는 제어시스템을 개발하고자 항공기의 자동착륙시스템을 위한 제어기법들을 연구하였다.

  • PDF

Internal Components Arrangement of MR Damper Landing Gear for Cavitation Prevention (캐비테이션 방지를 위한 MR 댐퍼형 착륙장치의 내부 형상 배치에 대한 연구)

  • Joe, Bang-Hyun;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.33-41
    • /
    • 2020
  • The landing gear of an aircraft is a device that absorbs and dissipates shock energy transmitted from the ground to the fuselage. Among the landing gears, the semi-active MR damper landing gear is supposed to show high-shock absorption efficiency under various landing conditions and secure the stability when out of control. In the case of the MR damper landing gear using an annular channel rather than orifice, Amesim, a commercial multi-physics program, is considered as more useful than the conventional two-degree-of-freedom model because the damping force generated by the pressure drop through the flow annular path can cause cavitation in the low-pressure chamber of the MR damper with a specific internal structure. In this paper, the main dynamic characteristics of the MR damper landing gear with an annular type flow path structure has been analyzed under the condition of cavitation. Based on the analysis results using Amesim, a design guideline for the MR damper flow path that prevents cavitation has been proposed based on the modification of the arrangement of internal components of the damper. The guideline was verified through a drop simulation.

Effects of Visual Information Blockage on Landing Strategy during Drop Landing (시각 정보의 차단이 드롭랜딩 시 착지 전략에 미치는 영향)

  • Koh, Young-Chul;Cho, Joon-Haeng;Moon, Gon-Sung;Lee, Hae-Dong;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • This study aimed to determine the effects of the blockage of visual feedback on joint dynamics of the lower extremity. Fifteen healthy male subjects(age: $24.1{\pm}2.3\;yr$, height: $178.7{\pm}5.2\;cm$, weight: $73.6{\pm}6.6\;kg$) participated in this study. Each subject performed single-legged landing from a 45 cm-platform with the eyes open or closed. During the landing performance, three-dimensional kinematics of the lower extremity and ground reaction force(GRF) were recorded using a 8 infrared camera motion analysis system (Vicon MX-F20, Oxford Metric Ltd, Oxford, UK) with a force platform(ORG-6, AMTI, Watertown, MA). The results showed that at 50 ms prior to foot contact and at the time of foot contact, ankle plantar-flexion angle was smaller(p<.05) but the knee joint valgus and the hip flexion angles were greater with the eyes closed as compared to with the eyes open(p<.05). An increase in anterior GRF was observed during single-legged landing with the eyes closed as compared to with the eyes open(p<.05). Time to peak GRF in the medial, vertical and posterior directions occurred significantly earlier when the eyes were closed as compared to when the eyes were open(p<.05). Landing with the eyes closed resulted in a higher peak vertical loading rate(p<.05). In addition, the shock-absorbing power decreased at the ankle joint(p<.05) but increased at the hip joints when landing with the eyes closed(p<.05). When the eyes were closed, landing could be characterized by a less plantarflexed ankle joint and more flexed hip joint, with a faster time to peak GRF. These results imply that subjects are able to adapt the control of landing to different feedback conditions. Therefore, we suggest that training programs be introduced to reduce these injury risk factors.